
California Law Review

Volume 105 | Issue 1 Article 5

2-1-2017

A “Source” of Error: Computer Code, Criminal
Defendants, and the Constitution
Christian Chessman

Follow this and additional works at: https://scholarship.law.berkeley.edu/californialawreview

Link to publisher version (DOI)
https://doi.org/10.15779/Z38S27M

This Comment is brought to you for free and open access by the California Law Review at Berkeley Law Scholarship Repository. It has been accepted
for inclusion in California Law Review by an authorized administrator of Berkeley Law Scholarship Repository. For more information, please contact
jcera@law.berkeley.edu.

Recommended Citation
Christian Chessman, A “Source” of Error: Computer Code, Criminal Defendants, and the Constitution, 105 Calif. L. Rev. 179 (2017).

https://scholarship.law.berkeley.edu/californialawreview?utm_source=scholarship.law.berkeley.edu%2Fcalifornialawreview%2Fvol105%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.berkeley.edu/californialawreview/vol105?utm_source=scholarship.law.berkeley.edu%2Fcalifornialawreview%2Fvol105%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.berkeley.edu/californialawreview/vol105/iss1?utm_source=scholarship.law.berkeley.edu%2Fcalifornialawreview%2Fvol105%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.berkeley.edu/californialawreview/vol105/iss1/5?utm_source=scholarship.law.berkeley.edu%2Fcalifornialawreview%2Fvol105%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.berkeley.edu/californialawreview?utm_source=scholarship.law.berkeley.edu%2Fcalifornialawreview%2Fvol105%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15779/Z38S27M
mailto:jcera@law.berkeley.edu

179

A “Source” of Error:
Computer Code, Criminal Defendants,

and the Constitution

Christian Chessman*

Evidence created by computer programs dominates modern
criminal trials. From DNA to fingerprints to facial recognition
evidence, criminal courts are confronting a deluge of evidence that is
generated by computer programs. In a worrying trend, a growing
number of courts have insulated this evidence from adversarial
testing by preventing defendants from accessing the source code that
governs the computer programs. This Note argues that defendants
are entitled to view, test, and critique the source code of computer
programs that produce evidence offered at trial by the prosecution.
To do so, this Note draws on three areas of law: the Confrontation
Clause, the Due Process Clause, and Daubert and its progeny. While
courts and commentators have grappled with specific computer
programs in specific criminal contexts, this Note represents the first
attempt to justify the systematic disclosure of source code by
reference to the structural features of computer programs.

Introduction .. 180
I. Program Problems and the Presumption of Reliability 183

A. Problematizing the Presumption .. 183
B. Structural Sources of Error .. 186

1. Accidental Errors ... 186
2. Software Updates to Legacy Code ... 189

 DOI: http://dx.doi.org/10.15779/Z38S27M
 Copyright © 2017 California Law Review, Inc. California Law Review, Inc. (CLR) is a
California nonprofit corporation. CLR and the authors are solely responsible for the content of their
publications.
 * Juris Doctor candidate at the University of California, Berkeley, School of Law, and
Senior Articles Editor at the Berkeley Technology Law Journal. I would like to thank Professor
Andrea Roth for her ongoing insights, guidance, and support as this Note developed, as well as Eliza
Duggan for her helpful edits of an early draft of this Note. Finally, I would like to thank Alexa Jones,
Sohayl Vafai, and all the other talented and thorough editors at the California Law Review for their
invaluable edits.

180 CALIFORNIA LAW REVIEW [Vol. 105:179

3. Software Rot .. 190
4. Inadvertent and Intentional Bias .. 192
5. Conditional and Concurrent Processes 194
6. Flawed Self-Test Diagnostics .. 195

C. Unknown Unknowns ... 196
II. Constitutional and Legal Justifications for Disclosure 199

A. Due Process Compels Disclosure .. 200
1. The Relevance Rationale ... 206
2. The Trade Secret Rationale .. 209
3. The Nonpossession Rationale .. 213

B. Daubert and Frye Compel Disclosure ... 215
1. The Daubert Inquiry .. 216
2. The Frye Inquiry .. 218
3. The Inquiry Under Mixed Standards 219

C. The Confrontation Clause Compels Disclosure 219
III. Judicial and Legislative Solutions .. 221

A. Judicial Solutions ... 221
B. Legislative Solutions .. 223
C. Potential Objections ... 225

Conclusion .. 228

If you load junk code into supercomputers, they can generate
meaningless results even faster than other computers.1

INTRODUCTION

In 1965, Gordon Moore predicted that the technological processing power
of computers would double every two years.2 That prediction—now termed
Moore’s Law—has remarkably held true for the last fifty years.3 The immense
growth in the power of computer processing has produced truly astounding
technologies, and that growth shows no sign of stopping. Predictably, these
technologies have been applied in criminal justice contexts, including criminal
prosecutions involving automated fingerprinting,4 automated DNA

 1. Steven Goddard, Quick Note for Climate Modelers: Computers Are No Smarter Than the
Moron Who Programs Them, REAL SCI. (Sept. 5, 2013), https://stevengoddard.wordpress.com
/2013/09/05/quick-note-for-climate-modelers-computers-are-no-smarter-than-the-moron-who-
programs-them [http://perma.cc/QS5E-8KPG].
 2. See Annie Sneed, Moore’s Law Keeps Going, Defying Expectations, SCI. AM. (May 19,
2015), http://www.scientificamerican.com/article/moore-s-law-keeps-going-defying-expectations
[https://perma.cc/Q2DD-9TZ3].
 3. See id.
 4. See, e.g., Hannah Y. Cheng, Computer Programs Improve Fingerprint Grading, PENN ST.
NEWS (July 3, 2013), http://news.psu.edu/story/280765/2013/07/03/research/computer-programs-

2017] A “SOURCE” OF ERROR 181

analysis,5 facial recognition,6 drunk driving,7 and peer-to-peer file sharing.8 Yet
for all their processing power, these computer programs are still confined by a
crucial limit: the programmer.

A computer program is nothing more than an organized series of
commands given by a human computer programmer. Though program
sophistication and speed may create the illusion that the programs function
autonomously, computer programs are wholly reducible to the written
commands of the human programmer. Every action taken by a computer is
taken only at the command of a human programmer.9

A brief introduction to the basic nature of these commands is thus
essential to evaluating what, if anything, criminal defendants should receive in
discovery when the prosecution relies on a computer program to produce and
introduce evidence at trial. The commands that control a computer program are
typically termed a program’s source code. The source code is a series of
commands written using alphanumeric characters that are readily intelligible to
humans who are familiar with the programming language.10

improve-fingerprint-grading [https://perma.cc/EQW5-28QQ] (describing automated evaluation of
fingerprints).
 5. See, e.g., Jacob Gershman, Defense Lawyers Demand Right to Inspect High-Tech DNA
Software, WALL ST. J. (Nov. 18, 2015), http://blogs.wsj.com/law/2015/11/18/defense-lawyers-
demand-right-to-inspect-high-tech-dna-software [http://perma.cc/8W77-MNNE] (describing fully
automated DNA analysis program).
 6. See, e.g., Jennifer Lynch, FBI Plans to Have 52 Million Photos in Its NGI Face
Recognition Database by Next Year, ELECTRONIC FRONTIER FOUND. (Apr. 14, 2014),
https://www.eff.org/deeplinks/2014/04/fbi-plans-have-52-million-photos-its-ngi-face-recognition-
database-next-year [http://perma.cc/94VZ-3K9V] (describing “the FBI’s massive biometric database
that may hold records on as much as one third of the U.S. population”).
 7. See, e.g., David Liebow, DWI Source Code Motions After Underdahl, 11 MINN. J.L. SCI.
& TECH. 853, 855–56 (2010).
 8. See, e.g., United States v. Cross, No. 07-cr-730 (DLI), 2009 WL 3233267, at *6–8
(E.D.N.Y. Oct. 2, 2009).
 9. The most cutting-edge advancements in computer science deal with self-modifying
programs that engage in “machine learning.” Jaime G. Carbonell et al., An Overview of Machine
Learning, in MACHINE LEARNING: AN ARTIFICIAL INTELLIGENCE APPROACH 3 (Ryszard S.
Michalski et al. eds., 1983) (offering conceptual overview of machine learning). These programs
combine preset rules of analysis with repeated exposure to data patterns to modify their output or
behaviors. See id. The name “machine learning” is misleading, though, because it suggests a
fundamental autonomy from the programmer that does not exist. See infra Part I.A (“That humans are
one step removed from program output is not equivalent to the removal of the human element.”). Even
when machines modify themselves, the rules guiding such modifications are set by computer
programmers. Thus, such modifications are fundamentally reducible to human instruction, even when
they are not directly attributable to humans. In short, a program is only capable of modification
because of (and pursuant to) human-programmed code. See also infra note 310; M. I. Jordan & T. M.
Mitchell, Machine Learning: Trends, Perspectives, and Prospects, 349 SCI. 255, 255 (2015)
(“Machine learning addresses the question of how to build computers that improve automatically
through experience. It is one of today’s most rapidly growing technical fields, lying at the intersection
of computer science and statistics, and at the core of artificial intelligence and data science.”).
 10. Programming languages may be likened to human languages in that both use words
governed by a standardized syntax to express meanings. See, e.g., Programming Language,
TECHTERMS, http://techterms.com/definition/programming_language [https://perma.cc/9PFC-7BN7]

182 CALIFORNIA LAW REVIEW [Vol. 105:179

For a common example from the Java programming language, the
command:

System.out.println(“Hello, World!”)

tells the computer system to output the printed line “Hello, World!” onto
the computer screen. When a program reads and follows that command, it
“execute[s]” the command.11

Some commands in a program’s source code may be executed
conditionally.12 Computer programs execute conditional commands only after
certain prespecified circumstances or conditions precedent have occurred. A
human programmer has the discretion to set the specific conditions precedent.
For example, a computer may be instructed to output “Hello, World!” if, and
only if, the user types “Tell the world hello!” into the program first. If a user
does not type “Tell the world hello!” until the program’s fiftieth use, then the
command code to output “Hello, World!” will not be executed until that fiftieth
use. Command execution can be conditioned on nearly anything, including user
action, the passage of a certain amount of time, the existence of a file on the
computer, or even internal hardware events.13 Conditional commands are
especially important in computer programs because they allow programs to
have additional levels of complexity and because they may only occur rarely,
making it more difficult to find errors in their execution.

The only way to completely understand how—and whether—a program
works is by reading the program’s source code. While some information can be
gleaned from viewing the program in action, this information is highly limited
and may omit crucial details that relate to the reliability and accuracy of the
program’s output. An analogy is illustrative: an observer interested in learning
about automobiles may deduce limited details about a given car by watching it
run. Though the observer might ascertain superficial information about the car,
the observer cannot learn crucial specific details without looking under the

(last visited Sept. 25, 2016). Source code is written in alphanumeric “high-level” languages and may
be contrasted with “machine code.” Machine code is a series of ones and zeros that substantively
correspond to the source code. The source code is converted into this binary format in order to be
readable by the computer or device executing the program. The distinction and relationship between
high-level languages and machine code is immaterial to this analysis.
 11. Execute, COMPUTER HOPE, http://www.computerhope.com/jargon/e/execute.htm
[https://perma.cc/GG39-RGEM] (last visited Sept. 25, 2016).
 12. See, e.g., If . . . Else, HOME & LEARN, http://www.homeandlearn.co.uk/
java/java_if_else_statements.html [http://perma.cc/SC37-KXDF] (last visited Sept. 25, 2016)
(explaining one form of conditional programming statement).
 13. iPhone users familiar with the warning “Temperature: iPhone needs to cool down”
have seen conditional programming in action. The iPhone only executes the code to display the
temperature warning when the internal temperature of the iPhone exceeds a certain threshold
preset by the programmer. If a user never leaves the iPhone in a heated environment, the
temperature warning code is never executed. See, e.g., Keeping iPhone, iPad, and iPod Touch
Within Acceptable Operating Temperatures, APPLE, https://support.apple.com/en-us/HT201678
(last updated June 29, 2015).

2017] A “SOURCE” OF ERROR 183

hood. Observers are similarly circumscribed when evaluating computer
programs; they can learn no more about a program by watching it run than one
might learn by watching a car drive. For both the car and the computer, looking
“under the hood” is essential to an accurate evaluation.

This Note argues that defendants are entitled to look under the hood.
Modern criminal trials are dominated by evidence created by computer
programs, and defendants are entitled to view, test, and critique the source code
of computer programs that produce evidence offered at trial by the
prosecution.14 For support, this Note draws on three areas of law: the
Confrontation Clause, the Due Process Clause, and Daubert and its progeny.
While courts and commentators have grappled with specific computer
programs in specific criminal contexts, this Note represents the first attempt to
justify the systematic disclosure of source code by reference to the structural
features of computer programs. Part I identifies structural sources of error that
only access to program source can reveal. Part II examines the constitutional
and legal implications of the structural errors in computer programming. Part
III proposes legislative and judicial solutions to the legal issues raised by
introducing untested computerized evidence and addresses potential objections.
This Note concludes by stressing the significance of adversarial testing by
criminal defendants.

I.
PROGRAM PROBLEMS AND THE PRESUMPTION OF RELIABILITY

A. Problematizing the Presumption

Both state and federal courts have issued decisions that presume the
reliability, objectivity, credibility, and accuracy of evidence produced by
computers.15 This presumption of reliability is typically unstated, and manifests
itself primarily in trial court denials of discovery requests for information about
the nature or execution of computer programs that generate evidence against
defendants,16 even when these programs produce the only evidence offered
against a defendant.17 The presumption of reliability both reflects and

 14. See Sergey Bratus et al., Software on the Witness Stand: What Should It Take for Us to
Trust It?, in TRUST AND TRUSTWORTHY COMPUTING 396 (Alessandro Acquisti et al. eds., 2010).
 15. See id. at 398–99 & n.9 (identifying and critiquing several criminal cases); Eric Van
Buskirk & Vincent T. Liu, Digital Evidence: Challenging the Presumption of Reliability, 1 J. DIGITAL

FORENSIC PRAC. 19, 20–21 (2006) (collecting cases).
 16. See Bratus et al., supra note 14, at 403 (“[W]hen computer-generated data is introduced as
evidence in court, there appears to be a strong assumption that such evidence is somehow impartial
and as such more trustworthy than testimony given by a human witness or an expert witness.”).
 17. See infra Part II.C (discussing State v. Chubbs and describing murder charges based on a
cold-hit DNA match from a fully automated DNA program).

184 CALIFORNIA LAW REVIEW [Vol. 105:179

reinforces the general public perception that computers automatically enhance
the accuracy of evidence.18

Computer scientists flatly reject that notion. The consensus in the field
instead suggests that computer programs do not automatically or inherently
enhance the reliability of evidence.19 Computer programs are more accurately
understood as tools—perhaps exceptionally fast, sophisticated, and useful
tools, but tools nonetheless. And like all tools, computer programs are saddled
with the imperfections and errors that inevitably come with human design and
use.20

In fact, computer programs are as susceptible to human manipulation as
any other form of evidence:

A computer scientist understands that the language of a computer
program does not somehow make it impossible for the speaker to “tell
a lie”, intentionally or unintentionally, but, on the contrary, is as open
to malfeasance or honest error (such as programmers’ overconfidence)
as any other kind of human expression.21

Evidence produced by computer programs arguably merits additional scrutiny
rather than relaxed scrutiny because the complexity of computer programs
makes it difficult for jurists and computer programmers alike to detect errors.22
The safeguards put in place by courts have not traditionally been geared toward
ferreting out the subtle and highly technical biases that may appear in computer
program code.23 The prejudice flowing from the higher risk of uncaught error is
compounded by the additional credibility that juries afford to computer-
produced evidence based on erroneous assumptions of precision and
impartiality.24

Even computer programs’ appearance of autonomous functionality is an
inaccurate fiction.25 Computer programs do not act autonomously in part

 18. See Bratus et al., supra note 14, at 397 (“There is a certain common expectation of
precision and impartiality associated with computer systems by non-specialists. However, computer
practitioners themselves joke that ‘computers make very fast, very accurate mistakes.’”).
 19. See id. at 404.
 20. See id.
 21. Id.
 22. See id. (“[P]utting a bias or an expression of an ulterior motive into the form of a computer
program is not unthinkable; it is not even very hard (but, as we will show, much harder to detect than
to commit).”).
 23. See Andrea Roth, Trial by Machine, 104 GEO. L.J. 1245, 1270, 1300 (2016) (explaining
that traditional “courtroom safeguards also seem an awkward fit” for scrutinizing “hidden
subjectivities and errors that often go unrecognized and unchecked”).
 24. See Bratus et al., supra note 14, at 308 (“Trier-of-fact perceptions. There is a certain
common expectation of precision and impartiality associated with computer systems by non-
specialists.”).
 25. The appearance of autonomy often bolsters the assumption that computer programs are
independent, objective, or free of human biases. Dispelling that fictional autonomy thus crucially
reveals the significant extent to which computer programs remain reliant on human beings throughout
their use.

2017] A “SOURCE” OF ERROR 185

because they wholly reduce to human commands,26 but also because they
require ongoing independent support from humans to function.27 Computer
programs need regular functionality and security updates to work as designed.28
And each update introduces an independent and substantial risk of new error
into the program, because the new code may modify or interact badly with
functional, preexisting code.29 Unsurprisingly, the consensus of computer
scientists is that the evidence produced by computer programs is no more
inherently reliable or truthful than the evidence produced by human
witnesses.30

This is not to say that particular programs cannot be demonstrated to be
credible. Like a human witness, a program that withstands robust examination
should undoubtedly be credited for doing so. For example, a computer program
with carefully crafted instructions that avoid introducing errors into the
computer’s output can and should be lauded. However, courts err when they
afford an a priori a categorical presumption of reliability to computer programs
a priori and shield them from testing by the defendant. In the same way courts
would balk at insulating a particular class of human evidence from testing,31
courts should balk at categorically insulating evidence simply because it was
produced by a computer.

This evidentiary observation plays an important role in framing the
discussion about defendant access to source code. Program output is neither
neutral nor objective because programs are, at their base, written human
speech. That humans are one step removed from program output is not
equivalent to the removal of the human element. If computer programs are no

 26. Even when computers appear to “make decisions” based on execution of conditional
command code, their “decisions” are wholly scripted outcomes that are decided in advance by the
computer programmer. A computer never makes an autonomous decision; the computer programmer
circumscribes all outcomes and all decisions. When a computer is confronted with an unanticipated
outcome, it either uses a preprogrammed catch-all error handler or it simply breaks. See, e.g., Java
Error Handling, HOME & LEARN, http://www.homeandlearn.co.uk/java/java_error_handling.html
[http://perma.cc/XF4G-FUK5] (last visited Mar. 18, 2016). Thus, even “decisions” that appear to
respond to external user stimuli are “decisions” only in appearance—substantively, such “decisions”
are merely the rote and rigid execution of a prefigured decision tree.
 27. See generally Audris Mockus & David M. Weiss, Predicting Risk of Software Changes,
5 BELL LABS TECHNICAL J. 169 (2000).
 28. See Luis Solano, Why Does Programming Suck?, MEDIUM (Dec. 15, 2015),
https://medium.com/@luisobo/why-does-programming-suck-6b253ebfc607#.kjsh0utxv
[https://perma.cc/JP4Z-3VK4] (“50 to 90% of the cost of building software goes towards maintaining
it after the first release (adding features, fixing bugs, system updates, etc).”).
 29. See Mockus & Weiss, supra note 27, at 169 (noting that unforeseen errors might occur in
previously vetted code because updates may modify code upon which other code relies); see also infra
Part II.B (discussing the relationship between software updates and source code errors).
 30. See also Perma Research & Dev. v. Singer Co., 542 F.2d 111, 125 (2d Cir. 1976)
(cataloguing impressive list of errors in computer program evidence).
 31. For example, no court would seriously entertain the suggestion that all DNA experts
should be permitted to testify without cross-examination, even in light of the considerable
technological underpinnings of DNA forensics.

186 CALIFORNIA LAW REVIEW [Vol. 105:179

more reliable—indeed, are no more ontologically—than human statements,
then many established concerns about human witness testimony readily apply
to evidence produced by computer programs, including bias, malfeasance, and
even simple mistakes.32 Thus, computer programs are not more reliable than
human statements because they are human statements—and no more than
human statements.

B. Structural Sources of Error

Structural sources of error are issues that arise from the process of
designing, coding, and implementing computer programs. These issues are
structural in that they are inherent in the nature of computer programming, and
errors in that they create the opportunity for subjectivity, bias, and mistakes to
impact the output of a program. This Section identifies the most common
structural sources of error and explores how they can adversely impact the
validity and reliability of evidence produced by computers for trials.

1. Accidental Errors

The most basic structural source of error is also the most obvious:
accidents. Because programs are complex and programmers are human, “any
programmer knows bugs and misconfigurations are inherent in software,
including—despite the programmers’ vigorous efforts to the contrary—in
mission-critical software.”33 These accidental errors can manifest in both
technical and substantive ways.

In the most basic sense, technical errors might occur when a programmer
makes a typo. One astounding study conducted on programmers of the
language C++ found that 33% of highly experienced programmers34 failed to
correctly use parentheses when coding basic equations,35 resulting “in almost
1% of all expressions contained in source code being wrong.”36 It is difficult to

 32. Subjective expressiveness is so pronounced that computer code is actually expressively
distinguishable—it is possible “to recognize the author of a given program based on programming
style” in the same way one might identify Nietzsche by his obscurity or Hemingway by his verbosity.
Jane Huffman Hayes & Jeff Offutt, Recognizing Authors: An Examination of the Consistent
Programmer Hypothesis, 20 J. SOFTWARE TESTING VERIFICATION & RELIABILITY 329 (2010).
 33. Bratus et al., supra note 14, at 397 (internal punctuation omitted).
 34. On average, the programmers involved in the experiment had 14.5 years of experience in
the field. Derek M. Jones, Operand Names Influence Operator Precedence Decisions, 20 CVU 1, 2, 5
(2008).
 35. The programming error is understandable given the highly technical role of parentheses in
programming code. See Bratus et al., supra note 14. For example, the code “x & y == z” does not
produce the same result as “(x & y) == z”. Despite their extreme visual similarity—which might make
the difference easy to miss in a program with two hundred thousand lines—these small segments of
code perform drastically different functions. See id. The former code evaluates whether “x” is
independently true, and also evaluates whether “y” is equal to “z.” The latter code evaluates whether
the combination of “x” and “y” is equal to “z.” A programmer that expects the former code to behave
in the same way as the latter code has made a basic but significant error.
 36. Jones, supra note 34, at 2.

2017] A “SOURCE” OF ERROR 187

overstate the seriousness of that statistic. Because many complex programs
contain hundreds of thousands or even millions of lines of code, 1 percent of all
expressions may amount to tens of thousands of errors in any given program.37

Different naming conventions for variables38—for example, the choice to
useSelectiveCapitalization or to use_underscored_names—also have an
empirical impact on programming error rates as well.39 Programmers might
also be working with a predecessor’s confusingly40 or similarly named
variables,41 and might simply type the wrong name. Issues with program syntax
might also be sources of mistake and error.42 The range of technical errors
made by programmers—who, like all employees, might be tired, unmotivated,
lazy, irritated with their supervisors, or otherwise afflicted by any number of
factors that could impact job performance—reflects the fundamentally human
element that is inextricable from computer science generally and computer
programming specifically.43 That human element is precisely why technical

 37. To put this in context, in a program with one million lines of code, a 1 percent expression
error rate amounts to 10,000 errors. If even a single percent of those 10,000 errors had a material or
prejudicial impact, then the program would have 100 prejudicial errors. In no other context do courts
tolerate such serious risk of evidentiary error without subjecting the evidence to adversarial testing.
And continuing to insulate evidence produced by computer programs only incentivizes practices that
amplify the risk of prejudicial errors. See Pamela R. Metzger, Fear of Adversariness: Using Gideon to
Restrict Defendants’ Invocation of Adversary Procedures, 122 YALE. L.J. 2550, 2573 (2013).
 38. See H. James de St. Germain, Variables, CS TOPICS, http://www.cs.utah.edu/
~germain/PPS/Topics/variables.html [http://perma.cc/SXV8-GNY6] (last visited Sept. 25, 2016)
(“Variables in a computer program are analogous to ‘Buckets’ or ‘Envelopes’ where information can
be maintained and referenced. On the outside of the bucket is a name. When referring to the bucket,
we use the name of the bucket, not the data stored in the bucket.”).
 39. See generally Dave Binkley et al., To CamelCase or Under_score, IEEE 17TH INT’L

CONF. ON PROGRAM COMPREHENSION 158, 164 (2009).
 40. For example, one veteran programmer confessed to naming variables after the Marx
brothers out of boredom. See Jeff Grigg, Comment to Bad Variable Names, CUNNINGHAM &

CUNNINGHAM, INC., http://c2.com/cgi/wiki?BadVariableNames [http://perma.cc/5SSA-BS6B] (last
visited Sept. 25, 2016); see also Marin Jones, How to Pick Bad Function and Variable Names,
MOJONES (Nov. 9, 2015), http://mojones.net/how-to-pick-bad-function-and-variable-names.html
[https://perma.cc/J4JA-F5DZ] (cataloguing common confusing program variable naming
conventions).
 41. Another veteran programmer, tasked with updating his predecessor’s code, described
narrowly avoiding error after finding ambiguous and similar variable names for distinct functions in
the program—specifically, when an employee’s account was closed versus when an employee’s
account was deleted from the company’s archive. See Steven Newton, Comment to Bad Variable
Names, CUNNINGHAM & CUNNINGHAM, INC., http://c2.com/cgi/wiki?BadVariableNames
[http://perma.cc/4A94-DN6C] (last visited Sept. 25, 2016).
 42. For example, the function “x = y” sets the variable “x” equal to the variable “y,” while the
function “x == y” evaluates whether the preexisting values for “x” and “y” are equal. A programmer
who incidentally misses (or types) an extra equal sign will have a computer program that produces
unanticipated and inaccurate output. Bratus et al., supra note 14, at 406.
 43. See Robert Garcia, “Garbage In, Gospel Out”: Criminal Discovery, Computer Reliability,
and the Constitution, 38 UCLA L. REV. 1043, 1073 (1991) (“Computerized information may be
wrong, incomplete, or misleading due to mechanical failure, mistake, fraud, or bias. Ultimately, people
are responsible for any errors, and there are infinite ways in which people can make mistakes, commit
fraud or reflect bias.”).

188 CALIFORNIA LAW REVIEW [Vol. 105:179

coding errors pervade the software industry, even when they are easily
preventable.44

Even a programmer who makes no technical coding errors will produce
inaccurate software if the programmer misunderstands the nature or
requirements of the job. For example, a human programmer may
misunderstand the program requirements because of miscommunication,45
misunderstanding,46 or accidental omission of important details during
instruction.47 Programmers might also be dealing with highly technical subject
areas—such as physics, chemistry, and biology—that do not overlap with their
training. Programmers tasked with creating driving under the influence (DUI)
programs for Minnesota grappled with complicated issues that intersected with
all three subject areas, and ultimately created a program that misrepresented
test subjects’ breath alcohol concentration.48 Unless such programmers also
hold advanced degrees in medicine, biochemistry, physics, and related fields,
they have an incomplete grasp of the concepts about which they code and may
thus make errors. And all of these programming errors are compounded when a
program’s source is actually a patchwork of code written by different
programmers and then stitched together.49

Honest but erroneous assumptions have already had serious implications
for program accuracy in the criminal justice context. In 2015, partial inspection
of the source code of a DNA evaluation program named STRmix revealed a
mistaken mathematical assumption on the programmer’s part. The inaccurate
assumption reduced the probability that a DNA sample matched a given
defendant in certain circumstances.50 This erroneous assumption was only

 44. See Robert N. Charette, Why Software Fails, 42 IEEE SPECTRUM 42 (2005) (“[S]oftware
failures occur far more often than they should despite the fact that, for the most part, they are
predictable and avoidable”).
 45. See, e.g., How to Work with a Programmer, COLUM. U. C. PHYSICIANS & SURGEONS,
http://ps.columbia.edu/CERS/how-work-programmer [https://perma.cc/B9JG-TSCD] (last visited
Sept. 25, 2016) (comparing the use of the term “database” by physicians at Columbia with the use of
“database” by programmers at Columbia to identify a source of miscommunication).
 46. See Thomas Chau & Frank Maurer, Knowledge Sharing in Agile Software Teams, in
LOGIC VERSUS APPROXIMATION 173, 174 (Wolfgang Lenski ed., 2004) (arguing that substantial
relevant information is inevitably lost in communication chains); see also How Projects Really Work
(Version 1.5), PROJECTCARTOON.COM BETA (July 24, 2006), http://projectcartoon.com/cartoon/2
[https://perma.cc/9XMT-2E26] (offering a humorous yet pointed example of a simple project gone
wrong).
 47. See Chau & Maurer, supra note 46; How Projects Really Work, supra note 46.
 48. See Liebow, supra note 7, at 856. While breath alcohol content can be used to estimate
blood alcohol content, the conversion factor for breath to blood can vary person to person. See id. In
this case, the programmers made a mistaken assumption and used an incorrect conversion factor for
breath to blood. See id. That error was revealed upon a review of the program’s source code. See id.
 49. See Troy Hunt, The Unnecessary Evil of the Shared Development Database, TROY HUNT
(Feb. 7, 2011), http://www.troyhunt.com/2011/02/unnecessary-evil-of-shared-development.html
[https://perma.cc/CF6B-QA33] (detailing the inevitable problems with joint programmer development
of code).
 50. See David Murray, Queensland Authorities Confirm ‘Miscode’ Affects DNA Evidence in
Criminal Cases, COURIER-MAIL (Mar. 20, 2015), http://www.couriermail.com.au/news/

2017] A “SOURCE” OF ERROR 189

revealed and indeed, could only be revealed, upon inspection of the program’s
source code.51 As a consequence, jurors relied on “demonstrably false
evidence” relating to DNA match statistics in over twenty-four cases, including
rape and murder.52 The stakes surrounding these mistakes could not be higher
for all parties involved: the state is encumbered with the substantial economic
cost of trying a murder case, and an innocent defendant risks loss of liberty or
worse. Even one such mistake is inexcusable, given the gravity of what is at
risk and the simplicity of the solution: giving defendants and their experts
access to source code.

2. Software Updates to Legacy Code

Another structural source of software code error is software updates. As
noted above, even perfectly working code that precisely matches the needs of
the user may be made unreliable and faulty by a software or security update.53
Anyone who has visited a website with a broken weblink that once worked
understands the basic version of this process. This is because:

Software development proceeds as a series of changes to a base set of
software. For new projects the base set may be initially empty. In most
projects, however, there are incremental changes to an existing,
perhaps large, set of code and documentation. Developers make
changes to the code for a variety of reasons, such as adding new
functionality, fixing defects, improving performance or reliability, or
restructuring the software to improve its changeability. Each change
carries with it some likelihood of failure.54

The incremental nature of computer programs means that the majority of
programming work is not developing new code, but instead working on “legacy
code,” or code that is written partially or wholly by other programmers.55 As
the number of programmers and the age of software increases, the number of
errors, mistakes, and broken segments of code increases.56 This occurs in part
because programmers have subjective programming conventions and styles that
do not always flow well when combined, much like an essay with several

queensland/queensland-authorities-confirm-miscode-affects-dna-evidence-in-criminal-cases/news-
story/833c580d3f1c59039efd1a2ef55af92b [http://perma.cc/ZG6X-5WWK].
 51. See id.; see also Bratus et al., supra note 14.
 52. Murray, supra note 50.
 53. See Mockus & Weiss, supra note 27, at 169.
 54. Id.
 55. The Healthy Fear Associated with Legacy Code, SMARTBEAR SOFTWARE (Nov. 19,
2015), http://blog.smartbear.com/programming/the-healthy-fear-associated-with-legacy-code
[http://perma.cc/Y872-XQBJ] (“Most of our efforts in software development involve a blend of new
and old code. We write some new code, stuff it into some existing code, and then try to figure out how
the two things will behave together in production.”).
 56. See Gerardo Canfora et al., How Changes Affect Software Entropy: An Empirical
Study, 19 EMPIRICAL SOFTWARE ENG’G 1 (2014); Hunt, supra note 49.

190 CALIFORNIA LAW REVIEW [Vol. 105:179

authors.57 Errors might also occur because of normal difficulties that arise with
group projects, such as miscommunication about how (or whether) to perform
specific functions.58 There are also a number of highly technical issues that can
arise with respect to legacy code.59 After programs reach a certain age, it is
impossible both as a practical matter and as a technical matter to continue
maintaining and updating legacy code.60

3. Software Rot

Even programs that were once perfectly written may be rendered defunct
by the passage of time.61 A phenomenon called “software rot,” where the
quality, functionality, and usefulness of a program actually degrade over time,
is a well-documented and debilitating problem in computer science.62 Software
rot occurs for a variety of reasons. At the most basic level, each software
update creates new interactions between different portions of the source code,
which may also entail unforeseen interactions and unforeseen consequences.63
These unforeseen interactions and the errors that attend them are one form of
software rot. Rot can also occur when changes to the program make certain
portions of the code redundant or entirely defunct, rendering their functionality
unpredictable.64

Programs might also rot because they have defunct dependencies. In
computer programming, dependencies are secondary programs on which a
primary program might rely.65 For example, a DNA analysis program might
rely on a particular Windows operating system to run, and that particular
Windows operating system might rely on still other programs in turn.
Dependency defunctness occurs when a computer program relies on a
secondary program that becomes defunct over the lifespan of the original

 57. See Canfora et al., supra note 55.
 58. See id.
 59. See Israel Ferrer, Surviving a Legacy Code Apocalypse: Android Dev at Twitter Scale,
REALM (Jan. 20, 2016), https://realm.io/news/oredev-israel-ferrer-android-legacy-code
[https://perma.cc/4RJJ-NCQY] (cataloguing a lengthy number of errors including code duplication,
unwieldy methods and parameters, oversized classes, and poor internal documentation).
 60. See Bruce W. Weide et al., Reverse Engineering of Legacy Code Exposed, PROC. 17TH

INT’L CONF. ON SOFTWARE ENG’G 327 (1995).
 61. See Clemente Izurieta & James M. Bieman, A Multiple Case Study of Design Pattern
Decay, Grime, and Rot in Evolving Software Systems, 21 SOFTWARE QUALITY J. 289, 290 (2013).
 62. Id.
 63. See id.
 64. See id.
 65. See id.

2017] A “SOURCE” OF ERROR 191

program.66 As a result, software that relies on Windows 8 might perform
unpredictably or incorrectly with Windows 8.1.67

While some software programmers might attempt to release an update that
bridges the gap between Windows 8 and Windows 8.1, post-release updates
and improvements are notoriously poor in terms of quality, effort, and
thoroughness relative to the original code.68 This structural result stems largely
from the drastically increased cost to improve and eliminate defects as a piece
of software ages,69 which is why many businesses choose to stop offering
technical support for older software even when that software still has a large
market base.70 Program dependency on outdated software has empirically had
an enormous impact on program functionality. For example, the U.S. Navy is
paying Microsoft roughly thirty million dollars to privately support Windows
XP because many of the Navy’s mission critical software systems depend on
it.71 For private software firms or municipal governments that cannot afford the

 66. See Chris Hoffman, Why Old Programs Don’t Run on Modern Versions of Windows (and
How You Can Run Them Anyway), HOW-TO GEEK (Sept. 24, 2013),
http://www.howtogeek.com/172768/why-old-programs-dont-run-on-modern-versions-of-windows-
and-how-you-can-run-them-anyway [https://perma.cc/WA22-LB4J].
 67. See id. (“Software written for Windows 3.1 or Windows 95 will likely be extremely
confused if it finds itself running on Windows 7 or Windows 8. It will look for files that no longer
exist and may refuse to even run in this unfamiliar environment.”).
 68. See Hector M. Olague et al., An Entropy-Based Approach to Assessing Object-Oriented
Software Maintainability and Degradation: A Method and Case Study, SOFTWARE ENG’G RES. &

PRAC. 442 (2006).
 69. See also Cliff, Comment to Software Defects: Do Late Bugs Really Cost More?,
SLASHDOT (Oct. 21, 2003), http://developers.slashdot.org/story/03/10/21/0141215/software-defects---
do-late-bugs-really-cost-more [http://perma.cc/QK8U-SNBH] (“For example, if a defect is found in
the requirements phase, it may cost $1 to fix. It is proffered that the same defect will cost $10 if found
in design, $100 during coding, $1000 during testing.”); Don Wells, Surprise! Software Rots!, AGILE

PROCESS (2009), http://www.agile-process.org/change.html [http://perma.cc/L2ZG-2MBY] (offering
a useful visualization of the cost curve); see generally Barry W. Boehm, Understanding and
Controlling Software Costs, 8 J. PARAMETRICS 32 (1988) (explaining that software defects found post-
deployment cost between fifty to two hundred times as much to fix as software defects caught earlier);
 70. See Scott Bekker, Windows XP Usage Still Strong at 250 Million Users, REDMOND MAG.
(Apr. 8, 2015), https://redmondmag.com/articles/2015/04/08/windows-xp-usage.aspx
[https://perma.cc/Q2TE-PZ6G] (noting 250 million users of Windows XP as of April 2015); Microsoft
Stops Supporting Windows XP, GEEK SQUAD, https://www.geeksquad.com/xpsupport
[https://perma.cc/25ZD-UZQE] (last visited Feb. 24, 2016) (describing Microsoft’s cost rationale—
given technological advancement—for declining to support Windows XP despite an enormous
continuing customer base). And in January 2016, Microsoft chose to stop supporting Windows 8,
showing that the window of profitability (and thus support) for software can close quickly, even
though an enormous number of computer programs still depend on that software to function. Gordon
Kelly, Microsoft Abandons ‘Windows 8’: Everything You Need to Know, FORBES (Jan. 12, 2016),
http://www.forbes.com/sites/gordonkelly/2016/01/12/microsoft-abandons-windows-8/#30ba6f89605c
[https://perma.cc/UPS9-QD9J].
 71. See Martyn Williams, The US Navy’s Warfare Systems Command Just Paid Millions to
Stay on Windows XP, IT WORLD (June 22, 2015), http://www.itworld.com/article/2939255/windows/
the-us-navys-warfare-systems-command-just-paid-millions-to-stay-on-windows-xp.html
[http://perma.cc/A9ZD-28M5].

192 CALIFORNIA LAW REVIEW [Vol. 105:179

casual expenditure of thirty million dollars, aging programs simply generate
more and more errors over time.72

4. Inadvertent and Intentional Bias

Another structural source of error is bias embedded in the source code. As
with human witnesses, bias may arise inadvertently or from intentional
attempts to deceive. Inadvertent biases, like inadvertent errors, are regular
features of computer programs.73 Programmers regularly make “implicit (and
incorrect) assumptions about the environment in which the program [will] be
run,” the types of inputs the program will handle, and the capacity and training
of the program user.74 Situations where a programmer’s mistaken assumptions
have “led to real-world failures” are constant occurrences in the field of
computer science.75 These mistaken assumptions and concomitant real-world
failures are further exacerbated when a programmer is dealing with a
substantively complex subject area, such as physics or chemistry.76

Computer programs may also be deliberately programmed to produce a
biased outcome. For example, one government programmer responsible for
writing the source code governing red light cameras conspired with a
prodigious number77 of government officials, police, and major corporations
“in order to rig the system so that it would turn from yellow to red quicker,
therefore catching more motorists.”78 Since the source code for the red light
programs was not made available, the conspiracy was only discovered when
the skyrocketing number of red light tickets drew official suspicion.79 A
programmer who chose to implant a subtler bias likely would not have been
caught at all absent release of the source code.80

Volkswagen was similarly embroiled in a public scandal involving
nondisclosure of source code when federal pollution regulators discovered that
Volkswagen’s diesel vehicles had been programmed to perform differently
during pollution testing than during actual use.81 Had Volkswagen’s source

 72. See Izurieta & Bieman, supra note 61.
 73. See Bratus et al., supra note 14, at 406.
 74. Id.
 75. Id. (identifying an enormous catalogue of such errors).
 76. See discussion supra Part II.B.1.
 77. See Jacqui Cheng, Italian Red-Light Cameras Rigged with Shorter Yellow Lights, ARS

TECHNICA (Feb. 2, 2009), http://arstechnica.com/tech-policy/news/2009/02/italian-red-light-cameras-
rigged-with-shorter-yellow-lights [https://perma.cc/7YZ2-HW64] (detailing a programmer’s
conspiracy with “63 municipal police, 39 local government officials, and the managers of seven
different companies”).
 78. Id.
 79. See Bratus et al., supra note 14, at 404.
 80. See id. (“[H]ad the bias been less pronounced, it might have not been detected at all.”).
 81. See David Kravets, VW Says Rogue Engineers, Not Executives, Responsible for Emissions
Scandal, ARS TECHNICA (Oct. 8, 2015), http://arstechnica.com/tech-policy/2015/10/volkswagen-pulls-
2016-diesel-lineup-from-us-market [http://perma.cc/Y9YJ-AKUL].

2017] A “SOURCE” OF ERROR 193

code been public, their duplicity could have been quickly discovered.82 But
because the code was private, Volkswagen succeeded in duping federal
regulators for more than half a decade.83 Whether in a civil or criminal context,
“secret code enables cheaters and hides mistakes” from judicial scrutiny.84

These concerns—exemplified by the red light program and Volkswagen’s
duplicity—are neither isolated nor insignificant. Indeed, because law
enforcement agencies, like any vendor, may discretionarily select software
providers, those providers may stand to gain by designing programs “to suit the
interests of their . . . vendor.”85 As a consequence, computer programmers and
software companies86 have a specific, structural, and pecuniary interest in
“incorporat[ing] biases and malfeasant logic” that bias the program in favor of
the vendor, whether that vendor is a private company or a law enforcement
agency.87 That structural pecuniary interest is magnified by the fact that subtle
biases are difficult, if not impossible, to discover even when source code is
disclosed.88 Deliberate biases are thus a low-risk and high-reward venture for
computer programmers and software companies. While some programmers and
companies certainly resist the urge to act on that pecuniary interest, their
discretionary choice can only be verified by vetting the source code.89 In short,
the only way to tell whether a program has biases is to actually look at it.90

When courts turn a blind eye to source code evaluations, it is more likely that
software engineers will act on the structural incentive to create biased
programs.91

 82. See, e.g., Rebecca Wexler, Convicted by Code, SLATE (Oct. 6, 2015),
http://www.slate.com/blogs/future_tense/2015/10/06/defendants_should_be_able_to_inspect_software
_code_used_in_forensics.html [http://perma.cc/5D6E-XWCT] (“The company admitted recently that
it used covert software to cheat emissions tests for 11 million diesel cars spewing smog at 40 times the
legal limit.”).
 83. See David Kravets, Secret Source Code Pronounces You Guilty as Charged, ARS

TECHNICA (Oct. 17, 2015), http://arstechnica.com/tech-policy/2015/10/secret-source-code-
pronounces-you-guilty-as-charged [http://perma.cc/52K2-N4VS].
 84. Wexler, supra note 82.
 85. Bratus et al., supra note 14, at 404.
 86. This is especially true of “[f]orensic device manufacturers” who “sell exclusively to
government crime laboratories” and “may lack incentives to conduct the obsessive quality testing
required.” Wexler, supra note 82.
 87. Bratus et al., supra note 14, at 404.
 88. See id. (noting that programmed biases are hard to detect but easy to implant).
 89. See id. at 405 (noting issues of program quality and programmer competence “can only be
conclusively judged via a source code review”); Garcia, supra note 43, at 1073 (characterizing
discovery of source code as “necessary to track down the reliability problems and evaluate the
reliability of the computerized information”).
 90. See supra note 89; Metzger, supra note 37, at 2573 (“Without an adversarial process, there
is no legal deterrent to careless, sloppy, or manufactured police work.”).
 91. Metzger, supra note 37, at 2573 (explaining that a lack of judicial scrutiny “encourages
even the most well-intentioned government actors to relax their quality-control and record-keeping
standards. And the ill-intentioned or malicious government witness has an increasing sense of
invulnerability”).

194 CALIFORNIA LAW REVIEW [Vol. 105:179

5. Conditional and Concurrent Processes

Conditional and concurrent processes also create structural errors in code.
As noted above, software programs may execute certain functions
conditionally. These conditional processes only occur when certain threshold
conditions, which are left to the subjective discretion of the programmer, have
been fulfilled.92 For conditional processes whose conditions only occur rarely,
embedded errors are more likely to escape notice because of the infrequency
with which the process runs. Concurrent processes are processes that execute
simultaneously, and thus may interfere with one another.93 Importantly,
concurrent processes may be wholly functional processes when executed
independently and still interfere with each other when executed concurrently.94

And issues with conditional and concurrent processes can combine when a rare
conditional process is executed and then acts concurrently with other processes
that interact badly with it.

The New York Commission on Forensic Science recently encountered
such an issue with its DNA analysis technology.95 A programming error “took
a particular set of circumstances to ‘fire’ and so occurred very rarely,”96 but
altered DNA match probabilities by an order of magnitude when it did occur.97
This difference in probabilities could easily form the difference between
exoneration and guilt for defendants impacted by this programming error.98
The coding error impacted DNA cases for years and was only caught when the
source code of STRmix was made available to defendants.99

 92. See supra notes 12–14.
 93. See Corky Cartwright, What Is Concurrent Programming?, RICE DEP’T COMPUT. SCI.
(Jan. 7, 2001), https://www.cs.rice.edu/~cork/book/node96.html [https://perma.cc/E2GZ-BMLF] (“In
a concurrent program, several streams of operations may execute concurrently. Each stream of
operations executes as it would in a sequential program except for the fact that streams can
communicate and interfere with one another.”).
 94. For example, imagine two processes that each use 60 percent of memory space available.
Individually, neither program would create a problem, but concurrently the programs would produce
an error. See, e.g., Stuart Barth, C++ Initializer Constantly Creating New Objects at Same Memory
Location, STACK OVERFLOW, http://stackoverflow.com/questions/32387482/c-initializer-constantly-
creating-new-objects-at-same-memory-location [https://perma.cc/JCR2-K96G] (last visited Oct. 7,
2016) (describing a related memory error where two programs use the same location in a computer’s
memory); Margaret Rouse & Stan Gibilisco, Stack Overflow, WHATIS.COM (Jan. 2013),
http://whatis.techtarget.com/definition/stack-overflow [https://perma.cc/KZ5V-5SHV] (describing an
example of this type of error).
 95. See Wexler, supra note 82.
 96. Letter from John Buckleton, Representative of STRmix, to Michael Green, Chair of N.Y.
State DNA Subcomm. (July 20, 2015) (on file with author).
 97. See Wexler, supra note 82.
 98. See infra note 121 and accompanying text.
 99. See Murray, supra note 50.

2017] A “SOURCE” OF ERROR 195

6. Flawed Self-Test Diagnostics

Another structural source of error is flawed self-testing diagnostics. Both
computer hardware and software are subject to hundreds of thousands of
miscellaneous generalized errors as well as errors that are program specific. For
example, one common error that generally applies to computer hardware
occurs when power surges actually change information stored in a computer’s
memory.100 Inevitable hardware degradation can release small amounts of
radiation, with a similarly troubling effect on program execution.101 Programs
can also experience errors specific to program implementation. For example, a
DUI test’s results might be skewed if the amount of air blown into the machine
is too little or too great.102

Because some errors are inevitable, computer scientists design self-testing
diagnostic functions for computer programs. These functions attempt to
identify when errors occur and then attempt to correct them (or identify when
correction is impossible). Thus, most devices have code that monitors the
power supply for potential voltage increases, and the DUI test might have code
that rejects air samples that fall outside of the proper volume range.

While self-testing diagnostic functions are a useful prophylactic, they are
neither perfect nor immune to error. These functions may not identify an error
correctly, may not fully correct the error, or may not identify an error at all.
Like all other code in the program, the composition of the self-test function is
left to the subjective discretion of the computer programmer. As a
consequence, some self-testing functions are inadequate, arbitrary, or
affirmatively harmful.103 And even when self-testing functions are perfectly
coded into the machine, they may also simply be turned off.104

 100. See Edson Borin et al., Software-Based Transparent and Comprehensive Control-Flow
Error Detection, IEEE PROC. INT’L SYMP. ON CODE GENERATION & OPTIMIZATION 333 (2006)
(noting that errors resulting from power supply issues “may result in incorrect program execution by
altering signal transfers or stored values”).
 101. See id. Notably, hardware degradation can introduce errors in two ways. First, degradation
can simply inhibit a given function in a program (for example, scratches on a CD prevent the CD from
being read). However, the radiation released by hardware degradation can also have an effect that is
subtler and less readily apparent. When even small levels of radiation are released by hardware
degradation, that radiation can corrupt data stored in a computer’s memory without inhibiting the
function of the program. See id. Thus, for example, a memory cell designed to remember whether a
certain fact was “true” or “false” might be switched from “false” to “true” because the cell was struck
by a charged particle from degradation, or even from extremely low levels of ambient radiation.
ACTEL, UNDERSTANDING SOFT AND FIRM ERRORS IN SEMICONDUCTOR DEVICES 1 (Dec. 2002),
http://www.microsemi.com/document-portal/doc_view/130765-understanding-soft-and-firm-errors-in-
semiconductor-devices-questions-and-answers [http://perma.cc/3TUB-LRPT] (“[T]he charge
(electron-hole pairs) generated by the interaction of an energetic charged particle with the
semiconductor atoms corrupts the stored information in the memory cell.”).
 102. See In re Source Code Evidentiary Hearings in Implied Consent Matters, 816 N.W.2d 525
(Minn. 2012) [hereinafter Source Code].
 103. See Charles Short, Guilt by Machine: The Problem of Source Code Discovery in Florida
DUI Prosecutions, 61 FLA. L. REV. 177, 180 (2009).
 104. See id.

196 CALIFORNIA LAW REVIEW [Vol. 105:179

The concern about inadequate self-check mechanisms is neither
hypothetical nor insignificant. For example, the New Jersey Supreme Court
ordered that the source code for the Alcotest 7110, a device for measuring
blood alcohol content via a sample of human breath, be turned over to criminal
defendants.105 An analysis of that source code “revealed that catastrophic error
detection [was] disabled” such that the program “could appear to run correctly
while actually executing invalid code.”106 The program also included a strange
and arbitrary rule for errors that were detected: they had to occur thirty-two
times consecutively before they were reported to the analyst running the
machine.107 Had an error occurred thirty-one times followed by a single correct
run of the program, the error would need to occur yet another thirty-two times
before it would be detected.

The rules underlying a program’s self-testing function—and indeed,
whether the self-testing function exists at all—can only be ascertained by
examining the program’s source code. The specifications for how errors are
measured, how errors are reported, how errors are corrected, and what errors
are omitted are all contained in the source code—and only contained in the
source code. Source code review thus enables detection of structural errors in
self-testing functions.

C. Unknown Unknowns

The final and perhaps strongest reason that defendants must have the
opportunity to analyze source code is to identify unknown unknowns. The
categories of error listed in Part I.B. are generalized, readily identifiable issues
applicable to any program. But the particularized issues of reliability for
computer programs, like the particular issues of reliability for human witnesses,
inhere in individual assessments of the programs.108 Unknown unknowns are
necessarily more insidious—and thus more dangerous—than their generalized
counterparts because they do not fit a readily identifiable mold.

 105. See id. at 185. The court did not specify on which ground it granted the discovery motion,
noting only that “good cause appear[ed]” to compel disclosure. State v. Chun, 923 A.2d 226 (N.J.
2007). The court later characterized its order as responsive to the defendant’s contention that
disclosure was “essential to an accurate determination of the reliability of the device.” State v. Chun,
943 A.2d 114, 123 (N.J. 2008).
 106. Short, supra note 103, at 185.
 107. See Lawrence Taylor, Secret Breathalyzer Software Finally Revealed, DUI BLOG (Sept. 4,
2007), https://www.duiblog.com/2007/09/04/secret-breathalyzer-software-finally-revealed
[http://perma.cc/RM5M-G67L] (“The software design detects measurement errors, but ignores these
errors unless they occur a consecutive total number of times. . . . [The] error must occur 32 consecutive
times for the error to be handled and displayed. This means that the error could occur 31 times, then
appear within range once, then appear 31 times, etc., and never be reported.”).
 108. See, e.g., Roth, supra note 23, at 1245 (criticizing “underscrutinized automation
pathologies” created by “hidden subjectivities and errors in ‘black box’ processes” in individual
programs).

2017] A “SOURCE” OF ERROR 197

The identification of unknown unknowns played a significant role in one
of the largest source code cases to date. In 2015, the Minnesota Supreme Court
addressed a statewide challenge to the reliability of the Intoxilyzer 5000EN, a
device used by the state to measure breath alcohol content.109 After Minnesota
disclosed the Intoxilyzer 5000EN’s source code, defendants around the state
challenged the device based on a review of its source code.110 The code
revealed that the machine was susceptible to a variety of undetected failures,
including erroneous results based on power surges,111 interference from cell
phones,112 and defects in the process of self-testing and reporting errors.113
Though the Minnesota Supreme Court rejected some of the challenges,114 the
court agreed with other challenges arising from errors disclosed by the source
code and partially barred admission of evidence produced by the Intoxilyzer
5000EN.115

In the Source Code case, the defendants were able to identify errors in the
Intoxilyzer’s functioning only after a review of the device’s source code.116 The
reliability issues with the Intoxilyzer were impossible to determine ex ante.117
Only after the defendants were given an opportunity to examine the source
code did they find errors—errors that were validated by the Minnesota
Supreme Court as sufficient to vitiate admissibility when present.118 The
Source Code defendants could not know whether the Intoxilyzer’s internal self-
test function was working—or if the program even had one119—without
inspecting the source code that governed the function.

The inability to identify unknown unknowns also manifested itself in a
stark discrepancy in DNA statistics in a recent California case. As part of an
initiative to follow up on cold cases, the state of California began submitting
DNA evidence from cold cases to Sorenson Forensics, a private DNA
processing vendor.120 While testing the sperm from a sexual assault and murder

 109. See Source Code, supra note 102.
 110. See id. at 528.
 111. See id. at 531.
 112. See id.
 113. See id.
 114. The court affirmed the lower tribunal’s rejection of several challenges on technical
grounds related to the defense expert’s documentation, rather than affirming on the grounds that the
source was indeed reliable. See id. at 534. The affirmance should be read narrowly, then, because it
hinges on the defendant’s failure to prove the problems were prejudicial, rather than holding that the
problems did not exist. See id. (criticizing the appellant’s expert because he “lacked a disciplined
approach to the testing he conducted”).
 115. See id. at 542.
 116. See id.
 117. See id.
 118. See id.
 119. For example, the New Jersey Supreme Court ordered disclosure of the source code for the
Alcotest 7110, a device similar in function to the Intoxilyzer 5000EN. Inspection of the source code
“revealed that catastrophic error detection is disabled” in the Alcotest 7110, such that it “could appear
to run correctly while actually executing invalid code.” Short, supra note 103, at 185.
 120. See Kravets, supra note 83.

198 CALIFORNIA LAW REVIEW [Vol. 105:179

committed in 1977, Sorenson Forensics found a low-level random match
probability (RMP)121—only 1 in 10,000—for Martell Chubbs.122 The
prosecution charged Mr. Chubbs with murder on that basis but elected not to
rely on Sorenson Forensics’ low RMP number for trial.123 Instead, the
prosecution sent another sample of the sperm DNA to a Pennsylvania lab
named Cybergenetics, which used a fully automated DNA analysis program
called TrueAllele to calculate a new RMP.124 Using TrueAllele and the exact
same sample Sorenson Forensics analyzed, Cybergenetics calculated that the
RMP for Mr. Chubbs was not 1 in 10,000, but 1 in
1,620,000,000,000,000,000125—an enormous increase by any standard.126 No
explanation was given for the difference in statistics.

TrueAllele’s new number had drastic implications for Mr. Chubbs’ guilt:
while Mr. Chubbs could (easily) mathematically be innocent if Sorenson’s
calculation was correct, crediting TrueAllele’s number would rule out any
other human who has ever lived on the planet since the beginning of history.127
Unsurprisingly, the prosecution proceeded using TrueAllele’s number. In
response, Mr. Chubbs sought discovery of TrueAllele’s source code on the
basis that the source code was necessary to present his defense and that failure
to disclose violated the Confrontation Clause and his right to compulsory
process.128 Cybergenetics opposed the discovery motion on the basis that
TrueAllele’s source code was a trade secret, though neither Cybergenetics nor
the prosecution proffered a protective order.129 After the prosecution refused to
disclose the source code, the trial court granted the defense’s motion to exclude

 121. Contrary to common belief, RMP does not indicate subjective confidence that the putative
match—here, Mr. Chubbs—is guilty. Instead, it indicates the likelihood that a randomly selected
person from the population would match the DNA sample at issue. Andrea Roth, Safety in Numbers?
Deciding When DNA Alone Is Enough to Convict, 85 N.Y.U. L. REV. 1130, 1150–51 (2010), explains
the statistical fallacy involved in conflating DNA RMP with subjective confidence in a source match:

An RMP of 1 in 1000 does not signify that there is only a 1 in 1000 chance that someone
other than the defendant is the source of the DNA. Rather, it means that a person randomly
selected from the population has a 1 in 1000 chance of matching the profile, or,
equivalently, that we would expect 1 in every 1000 people to share the profile. In a
population of 20,000 people, for example, we would expect about twenty people to match.
Thus, the match alone only puts the defendant within a group of twenty possible sources, a
far cry from suggesting only a 1 in 1000 chance that he might not be the source.

 122. Kravets, supra note 83.
 123. See id.
 124. See id.
 125. The verbal equivalent of this number is 1.62 quintillion, which constitutes an astounding
increase of more than twelve orders of magnitude.
 126. See Kravets, supra note 83.
 127. See Roth, supra note 121 and accompanying text.
 128. See People v. Superior Court (Chubbs), No. B258569, 2015 WL 139069, at *4 (Cal. Ct.
App. Jan. 9, 2015).
 129. See id. (“The [trial] court explained that although it would grant a protective order to
minimize disclosure of the source code, the source code would be revealed to a certain extent at trial.
The People subsequently did not proffer a protective order, but instead refused to turn over the source
code.”).

2017] A “SOURCE” OF ERROR 199

the TrueAllele RMP number from being introduced at trial.130 The prosecution
subsequently filed an interlocutory appeal of the suppression order.

A California intermediate appellate court granted the interlocutory appeal
and reversed the suppression order.131 Assuming without establishing that
TrueAllele’s source code was a trade secret, the appellate court held that Mr.
Chubbs did not show the source code was sufficiently “necessary,” and that the
Confrontation and Compulsory Process Clauses do not apply to pretrial
discovery.132 The appellate court did not explain how Mr. Chubbs could make
the particularized showing it demanded without access to the source code, nor
did it identify what showings would constitute sufficient particularity.
Following appellate reversal, Mr. Chubbs pled no contest to second-degree
murder and was sentenced to seven years and eight months in prison.133

Since the Supreme Court of California declined certiorari, Mr. Chubbs
had very few options available to him. Without access to TrueAllele’s source
code, Mr. Chubbs could not explain whether TrueAllele’s calculation relied on
erroneous assumptions, mistakes in coding, or other errors. Both Mr. Chubbs
—and just as importantly, the trial court—had no way to determine which
errors were embedded in the code without actually looking at the code. Only by
judicial examination can the justice system search for accidental coding
mistakes, willful biases embedded in code, or simply an angry employee gone
rogue.134 Instead, Mr. Chubbs will be faced with the daunting task of
explaining away “the misleadingly pristine testimonial hearsay” that TrueAllele
produced as evidence against him.135

II.
CONSTITUTIONAL AND LEGAL JUSTIFICATIONS FOR DISCLOSURE

The U.S. Supreme Court has held that the Due Process Clause,136 the
Compulsory Process Clause,137 and the Confrontation Clause138 of the U.S.
Constitution are interlocking protections that collectively guarantee criminal
defendants “a meaningful opportunity to present a complete defense” at trial.139

 130. See id.
 131. See id. at *1.
 132. Id. at *9.
 133. See Stephanie M. Lee, People Are Going to Prison Thanks to DNA Software—But How It
Works Is Secret, BUZZFEED (Mar. 18, 2016), https://www.buzzfeed.com/stephaniemlee/dna-software-
code [https://perma.cc/KL2Z-SYZH].
 134. See, e.g., Lori Jane Gliha, Flawed Forensics: Undoing the Dirty Work of Annie Dookhan,
AL JAZEERA AM. (June 4, 2015), http://america.aljazeera.com/watch/shows/america-
tonight/articles/2014/6/4/flawed-forensicsundoingthedirtyworkofanniedookhan.html
[https://perma.cc/X4WS-Q2LS] (describing deliberately tainted evidence in forty thousand cases).
 135. Thomas v. United States, 914 A.2d 1, 16–17 (D.C. 2006).
 136. See U.S. CONST. amend. XIV.
 137. See U.S. CONST. amend. VI.
 138. See id.
 139. Holmes v. South Carolina, 547 U.S. 319, 324 (2006).

200 CALIFORNIA LAW REVIEW [Vol. 105:179

Congress implemented further trial safeguards in the form of the Federal Rules
of Evidence. These safeguards include Rule 702’s requirements for expert
testimony under Daubert,140 its progeny,141 and Daubert’s state-level
analogues.142 This Section argues that the Due Process and Confrontation
Clauses as well as the Frye and Daubert standards compel disclosure of
program source code as a prerequisite to the admissibility of evidence produced
at trial.

A. Due Process Compels Disclosure

The meaningful opportunity to present a complete defense is one of “the
most basic ingredients of due process of law.”143 The right to present a
complete defense encompasses the defendant’s ability to meaningfully test the
prosecution’s evidence and to present favorable evidence in turn.144 That right
“may, in appropriate cases, bow to accommodate other legitimate interests in
the criminal trial process.”145 To that end, federal and state lawmakers have
limited latitude to promulgate rules of evidence,146 but that latitude is exceeded
by “evidence rules that infringe upon a weighty interest of the accused and are
arbitrary or disproportionate to the purposes they are designed to serve.”147
There are thus two classes of evidentiary restrictions that violate the right to
present a complete defense: (1) where no legitimate purpose for the restriction
exists and (2) where a legitimate purpose exists, but the restriction is not
tailored to meet that purpose.148

Interestingly, the Court has never squarely addressed the degree of
tailoring required for a restriction to avoid violating the Constitution. The Court
has consistently and repeatedly characterized the right to present a defense as
“fundamental”149 and characterized impositions on fundamental rights as
“[u]nquestionably” subject to strict scrutiny.150 While the Court has “closely
examined” situations in which state evidentiary rules limit adversarial

 140. See Daubert v. Merrell Dow Pharm., Inc., 509 U.S. 579 (1993).
 141. The requirements imposed by Rule 702 have been described in a series of cases that have
come to be known as the Daubert trilogy. See generally David E. Bernstein & Jeffrey D. Jackson, The
Daubert Trilogy in the States, 44 JURIMETRICS 351 (2004). These requirements are described in more
detail infra Part II.B.
 142. See id.
 143. Washington v. Texas, 388 U.S. 14, 18 (1967).
 144. See id. at 19.
 145. Chambers v. Mississippi, 410 U.S. 284, 295 (1973).
 146. See Holmes v. South Carolina, 547 U.S. 319, 324 (2006).
 147. Id. (internal quotation marks omitted).
 148. Id. at 320 (holding that restrictions “disproportionate to the purposes they are designed to
serve” are unconstitutional).
 149. Chambers, 410 U.S. at 302 (“Few rights are more fundamental than that of an accused to
present witnesses in his own defense.”); Washington, 388 U.S. at 19 (“This right is a fundamental
element of due process of law.”).
 150. Regents of Univ. of Cal. v. Bakke, 438 U.S. 265, 357 (1978).

2017] A “SOURCE” OF ERROR 201

testing,151 the Court has never explicitly applied any degree of scrutiny to
impositions on the right to present a complete defense. In Washington v.
Texas,152 the seminal complete defense case, the Court appeared to apply a
tailoring requirement akin to intermediate scrutiny when it invalidated a Texas
rule preventing codefendants from testifying on behalf of each other.153 Texas
offered the legitimate purpose of preventing perjury, since both codefendants
could conspire to falsely testify at each other’s trials and produce mutual
wrongful acquittals.154 But the Court rejected that purpose as insufficiently
tailored because it was overinclusive.155 Confusingly, the Court used language
that seems more consistent with rational basis tailoring to describe its holding
in that case.156

Subsequent Supreme Court cases have typically quoted rational basis
language exactly or used variations of the word “rational,” but none have
applied it in any meaningful sense.157 Many have invalidated restrictions that
seem like they ought to survive the traditionally deferential rational basis
review.158 Thus, this Note will not attempt to extract a black letter threshold for
disproportionality from the past half-century’s tangled jurisprudence. Instead, it
will proceed by drawing principled analogies between the restrictions
invalidated by previous cases and the restrictions on adversarial testing created
by the admission of evidence produced by programs whose source code was
not disclosed.

The Supreme Court has repeatedly found arbitrariness where states
impose categorical, inaccurate, and a priori determinations about evidence. The
Court’s jurisprudence consistently favors individualized and contextual factual
determinations made by trial courts over speculative, sweeping, and broad
determinations. Thus, in Washington v. Texas, the Supreme Court invalidated a
Texas statute restricting codefendants from testifying for each other because
such a restriction would “prevent whole categories of defense witnesses from

 151. See Chambers, 410 U.S. at 295.
 152. 388 U.S. at 14.
 153. See id. at 16.
 154. See id. at 22.
 155. See id.
 156. See id. (“The rule . . . cannot even be defended on the ground that it rationally sets apart a
group of persons who are particularly likely to commit perjury.”).
 157. Holmes v. South Carolina, 547 U.S. 319, 330 (2006) (invalidating a rule that did not
“rationally serve the end” in question but acknowledging that a rationale for the rule existed); United
States v. Scheffer, 523 U.S. 303, 308, 312 (1998) (requiring that a restriction be “rational” but also
“reasonable” and “proportional”); Rock v. Arkansas, 483 U.S. 44, 50, 61 (1987) (quoting the term
“rational” but applying the standard of “clear evidence”); Crane v. Kentucky, 476 U.S. 683, 691
(1986) (noting lack of “any rational justification” as “[e]specially” rather than independently
compelling reversal). No Supreme Court case dealing with the right to present a complete defense has
a holding that explicitly hinged on preferring one tailoring threshold for interpreting proportionality
over another.
 158. See the detailed discussion of the Court’s complete defense jurisprudence later in this
Section.

202 CALIFORNIA LAW REVIEW [Vol. 105:179

testifying on the basis of a priori categories that presume them unworthy of
belief.”159 The Court reasoned that while some codefendants may have an
incentive to lie, the connection between status as a codefendant and perjury
was far too attenuated to justify a categorical presumption.160 Instead, the
adversarial process could properly test the evidence from a codefendant. If
biases in a codefendant’s testimony existed, the prosecution could ferret them
out via cross-examination.

The Court confronted another categorical evidentiary bar in Rock v.
Arkansas,161 in which the Arkansas Supreme Court held that hypnotically
refreshed recollections were per se inadmissible.162 In Rock, the defendant
underwent hypnosis sessions to help refresh her recollection of a shooting
incident prior to trial.163 Following the sessions, the defendant remembered
additional details about the shooting, but the trial court barred the defendant
from introducing them.164 Instead, the trial court only permitted the defendant
to recount information that she had remembered before her hypnosis
sessions.165 The Arkansas Supreme Court affirmed the trial court’s decision
and went on to hold that hypnotically refreshed memories were categorically
inadmissible at trial.166

The U.S. Supreme Court granted certiorari and reversed.167 While
acknowledging that hypnosis could be unreliable and that as a field it was still
“in its infancy,” the Court nonetheless rejected Arkansas’s categorical
exclusion of hypnotically refreshed recollections as overbroad.168 The Court
recognized Arkansas’s “legitimate interest in barring unreliable evidence,” but
refused to extend that interest “to per se exclusions that may be reliable in an
individual case.”169 To justify a categorical presumption of “[w]holesale
inadmissibility” for all hypnotically refreshed recollections, Arkansas would
need (and failed to produce) “clear evidence” that repudiated “the validity of all
posthypnosis recollections.”170 Instead of presuming that such recollections
were generally unreliable, the Court admonished trial courts to individually
assess the applicability of the general rationale to individual cases for a case-
by-case determination.171

 159. Washington v. Texas, 388 U.S. 14, 22 (1967).
 160. See id.
 161. 483 U.S. at 44.
 162. See id. at 48–49.
 163. See id. at 46.
 164. See id. at 47.
 165. See id. at 48.
 166. See id. at 48–49.
 167. See id.
 168. Id. at 61 (“Arkansas, however, has not justified the exclusion of all of a defendant’s
testimony that the defendant is unable to prove to be the product of prehypnosis memory.”).
 169. Id.
 170. Id.
 171. See id.

2017] A “SOURCE” OF ERROR 203

The Supreme Court has also found a violation of the right to present a
defense where an evidentiary ruling relies on a factual assumption that
favorably credits the prosecution’s evidence.172 In Holmes v. South Carolina,
the trial court prevented the defendant from introducing evidence of third-party
guilt, reasoning that the prosecution’s strong forensic evidence of guilt made
the third-party evidence tangentially probative.173 Since the prosecution’s
scientific evidence made it extremely unlikely that someone else committed the
crime, the court reasoned, the defense’s third-party guilt evidence was merely
“conjectural” and thus irrelevant.174

A unanimous Supreme Court reversed.175 While acknowledging that
states could prevent the introduction of irrelevant evidence, the Court flatly
rejected the state’s argument that the third-party guilt evidence was
irrelevant.176 Reasoning that the prosecution’s evidence was only strong “if
credited,” the Court ruled that the trial court mistakenly credited the
prosecution’s case as presumptively true in its holding.177 Instead, the Court
cautioned, admission of evidence by a defendant should not rest upon
reasoning that presumes the accuracy or correctness of the prosecution’s
evidence.178

In addition to the arbitrariness inquiry, several decisions have also held
that excluding sufficiently important evidence may be an independent violation
of the right to present a defense. In Crane v. Kentucky, the defendant moved to
suppress his confession on the grounds that it was involuntary, given a variety
of indicators of coerciveness.179 The trial court denied the motion and found the
confession legally voluntary, and the case proceeded to trial.180 At trial, the
defense attempted to introduce the factual issue of the confession’s reliability—
that the circumstances surrounding the confession were coercive and thus made
the confession factually unreliable, even if it was voluntary in a legal sense.181
The trial court denied the motion, reasoning that factual reliability was
encompassed within the trial court’s voluntariness holding, and prohibited the
defense from introducing any evidence related to the circumstances of the
confession.182 Though it was not the only evidence, the confession was the
prosecution’s strongest evidence and the core of its case against the

 172. See Holmes v. South Carolina, 547 U.S. 319, 330 (2006).
 173. See id. at 323.
 174. Id. at 323–24.
 175. Id. at 324.
 176. See id. at 330.
 177. Id.
 178. See id.
 179. 476 U.S. 683 (1986). The defense relied on the length of the interrogation, interrogation
tactics, and multiple inconsistencies in the confession, among other indicators, to support the claim of
involuntariness.
 180. See id.
 181. See id. at 685–86.
 182. See id. at 686.

204 CALIFORNIA LAW REVIEW [Vol. 105:179

defendant.183 The jury convicted the defendant of murder, and the Kentucky
Supreme Court affirmed the conviction.184

The U.S. Supreme Court reversed, noting that coercive circumstances that
may not rise to the level of legal involuntariness may still bear on the factual
reliability of a confession.185 Crucially, the Court rested its holding on the
importance of the evidence to the defendant’s case in chief: “Indeed, stripped
of the power to describe to the jury the circumstances that prompted his
confession, the defendant is effectively disabled from answering the one
question every rational juror needs answered: If the defendant is innocent, why
did he previously admit his guilt?”186 Though the prosecution offered evidence
in addition to the confession, the Court nonetheless found a constitutional
violation occurred when the trial court prevented the defendant from testing the
prosecution’s evidence, because of the centrality of the confession to the
prosecution’s case.187 Notably, the Court suggested that excluding evidence
central to a defense was a constitutional violation independent of the
arbitrariness inquiry developed in the Court’s line of cases focusing on
arbitrariness.188 Those decisions found that violations of the right to present a
defense exist even when dealing with a valid evidentiary rule, if the rule was
“applied mechanistically to defeat the ends of justice” and the evidence was
“critical” to the defense.189

Some scholarly literature and lower court opinions have noted that it is
unclear whether (or to what degree) this line of cases remains good law.190
However, none of the more recent decisions purport to modify or overrule this
line of case law.191 Thus, the status of an independent centrality-based violation
is unclear. Regardless of whether centrality furnishes an independent ground

 183. See id. at 685.
 184. See id. at 686.
 185. See id. at 688.
 186. Id. at 689.
 187. See id. at 690 (“We break no new ground in observing that an essential component of
procedural fairness is an opportunity to be heard. That opportunity would be an empty one if the State
were permitted to exclude competent, reliable evidence bearing on the credibility of a confession when
such evidence is central to the defendant’s claim of innocence.”) (internal citations omitted).
 188. See id. (noting that in addition to the centrality issue, Kentucky’s lack of justification for
the exclusion “especially” compelled the decision rather than functioning as a precondition to it).
 189. Green v. Georgia, 442 U.S. 95, 97 (1979) (finding violation of the right to present a
defense even in a penalty phase proceeding because the evidentiary rule was “applied mechanistically
to defeat the ends of justice” and the evidence was “highly relevant to a critical issue” related to
sentencing); Chambers v. Mississippi, 410 U.S. 284, 302 (1973) (finding violation of the right to
present a defense even when a valid evidentiary rule is “applied mechanistically to defeat the ends of
justice” because the evidence was “critical” to the defense and “constitutional rights directly affecting
the ascertainment of guilt are implicated”).
 190. See Colin Miller, Dismissed with Prejudice: Why Application of the Anti-Jury
Impeachment Rule to Allegations of Racial, Religious, or Other Bias Violates the Right to Present a
Defense, 61 BAYLOR L. REV. 873, 898–99 (2009).
 191. See, e.g., Holmes v. South Carolina, 547 U.S. 319, 324–25 (2006) (citing the Chambers
decision favorably).

2017] A “SOURCE” OF ERROR 205

for finding a violation of the right to present a defense, it undoubtedly plays a
role in the inquiry.192

In summary, a survey of the Court’s holdings reveals that the Court has
been averse to justifications for excluding evidence that rely on categorical
generalizations about specific evidence or general evidentiary categories, as
well as justifications that include presumptive crediting of prosecution
evidence. The Court has also insisted that defendants are not prevented from
accessing and presenting evidence when that evidence is “critical” to a
defendant’s case, especially when that critical evidence is excluded based on
the “mechanical” application of an evidentiary rule. In all three situations—
generalizations, crediting, and lack of access to critical evidence—the Court
has determined that limitations on adversarial testing violate the defendant’s
right to present a defense. The proper inquiry with respect to source code
discovery, then, is to compare the evidentiary limitations disclaimed by the
court with the justifications for denying defendants access to source code.

As in the above cases, the inquiry into whether insulating computerized
evidence from adversarial testing violates the right to present a complete
defense turns on the nature and persuasiveness of the rationale for denying a
defendant access to source code and the significance of the evidence to the
defense. The majority of courts attempt to offer some rationale for denying
defendants access to source code. These rationales fall broadly into three
categories: (1) the source code is irrelevant;193 (2) the source code is a trade
secret;194 and (3) the state does not possess the source code.195 None of these
rationales withstand scrutiny, nor do they present the substantial “legitimate
interests” to which this fundamental right should “bow to accommodate.”196

While I present refutations of all three rationales in the context of the
constitutional right to present a defense, it is worth noting that they stand
independently as direct refutations as well. For example, every argument for
why the source code is relevant (and thus arbitrarily excluded) is also an
argument for why the source code is relevant, full stop. Though this Note
provides constitutional context by framing each argument through the lens of
the right to present a defense, such context is not necessary to directly
challenge the accuracy of a rulings based on any of these rationales.

 192. See id.
 193. See, e.g., State v. Bastos, 985 So. 2d 37, 43 (Fla. Dist. Ct. App. 2008) (“There would need
to be a particularized showing demonstrating that observed discrepancies in the operation of the
machine necessitate access to the source code.”); see also People v. Cialino, 831 N.Y.S.2d 680, 681–
82 (Crim. Ct. 2007) (characterizing defendant’s request for source code as a “fishing expedition”).
 194. See, e.g., Moe v. State, 944 So. 2d 1096, 1097 (Fla. Dist. Ct. App. 2006) (relying on the
trade secret rationale, inter alia, to deny access).
 195. See, e.g., Short, supra note 103, at 195; Ken Strutin, An Examination of Source Code
Evidence, N.Y.L.J. (Nov. 13, 2007), http://www.newyorklawjournal.com/id=900005495696/An-
Examination-of-Source-Code-Evidence [https://perma.cc/Q6V8-UN7A] (surveying cases relying on
nonpossession).
 196. Chambers v. Mississippi, 410 U.S. 284, 295 (1973).

206 CALIFORNIA LAW REVIEW [Vol. 105:179

1. The Relevance Rationale

A number of courts have refused to compel disclosure of program source
code for evidence produced by computers, holding that the source code is
irrelevant.197 The relevance rationale is often articulated in one of two ways:
some courts have simply suggested that the source code is never relevant, while
other courts have suggested that the source code is not relevant without a
“particularized” showing that the source code would be especially relevant to
the specific defendant asking for it.198 Neither rationale is factually true or
legally sufficient.

The general relevance of a program’s source code is established by the
prosecution’s proffer of evidence created by a computer program. Computer
programs are plagued by biases, mistakes, faulty assumptions, and outright
malice embedded in the program functionality.199 These errors are pervasive,
material, and—most importantly—inevitable in every single computer program
as a result of the inextricable, subjective human element injected by human
programmers.200 Generalized errors like bias and mistakes are only
compounded by “unknown unknown” sources of error, which may manifest in
unpredictable yet prejudicial ways.201 These mistakes, errors, and biases can
only be determined upon review of a program’s source code.202

In short, thorough review of the source code is not only an efficient means
of identifying programming errors—it is the only means of doing so.203 The
source code is especially relevant when evidence produced by a computer
program is the sole evidence introduced by the prosecution at trial.204 Since
source code is necessary to militate against program flaws, claiming that source
code is categorically irrelevant amounts to a categorical judgment that
computer programs are flawless.

Both the evidence-crediting doctrine in Holmes and the categorical-
presumption doctrines of Rock and Washington prohibit this inaccurate
assumption. Holmes stands for the proposition that evidentiary rulings—
specifically, relevance rulings—may not rest upon untested assumptions that
favorably credit the prosecution’s evidence.205 In Holmes, the Supreme Court
unanimously applied this proposition to reverse the exclusion of third-party

 197. See, e.g., Bastos, 985 So. 2d at 43; Cialino, 831 N.Y.S.2d at 681–82; see also Short, supra
note 103, at 182.
 198. See, e.g., Bastos, 985 So. 2d at 43; Cialino, 831 N.Y.S.2d at 681–82; see also Short, supra
note 102, at 182.
 199. Supra Part II.B.
 200. Supra Part II.C.
 201. Garcia, supra note 43, at 1073.
 202. See id.; supra Part II.B.
 203. See Garcia, supra note 42, at 1073; supra Part II.B.
 204. See generally Roth, supra note 121 (cataloguing federal court rejections of sufficiency
challenges in cases where a DNA “cold hit” was the only evidence).
 205. See Holmes v. South Carolina, 547 U.S. 319, 330 (2006).

2017] A “SOURCE” OF ERROR 207

guilt evidence as irrelevant.206 The trial court reasoned that the evidence was
irrelevant because the prosecution made a strong forensic showing of guilt.207
The Court squarely rejected that rationale because it required assuming that the
prosecution’s evidence was true.208

Source code evidence presents an even more compelling version of the
factual situation in Holmes. Whereas in Holmes the defendant sought to
indirectly test the prosecution’s forensic evidence by introducing evidence of a
third party’s guilt, source code defendants are attempting to directly challenge
the prosecution’s evidence by subjecting it to detailed scrutiny and analysis.
Similarly, while Holmes dealt with an unstated credit to the prosecution’s
evidence,209 trial courts dealing with source code have overtly, and mistakenly,
characterized computer programs as categorically objective, categorically
reliable, or categorically accurate.210 An application of Holmes thus
resoundingly repudiates the characterization of source code as categorically
irrelevant.

Intuitively, access to source code is especially significant when evidence
produced by a computer plays a prominent role in a defendant’s trial—
particularly if it is the only evidence at a defendant’s trial. In those cases,
limiting source code access means that the defendant is “stripped of the power
to describe to the jury the circumstances that prompted” the computer’s
result.211 Thus, “the defendant is effectively disabled from answering the one
question every rational juror needs answered:”212 why does a computer think
that you are guilty?213 The answers to that question lie exclusively in the
computer program’s source code.

The often-explicit categorical presumption that evidence produced by
computer programs is automatically objective and may thus be shielded from
testing also runs afoul of Washington v. Texas. Washington proscribes
evaluating evidentiary assertions “on the basis of a priori categories that
presume them unworthy of belief.”214 However, the only way to hold that
source code is categorically irrelevant is to assume that computer programs are
categorically flawless by the simple virtue of being computer programs.

 206. See id.
 207. See id.
 208. See id.
 209. See id.
 210. See Bratus et al., supra note 14, at 403.
 211. See Crane v. Kentucky, 476 U.S. 683, 689 (1986).
 212. Id.
 213. Of course, a computer does not actually declare guilt or innocence. But for a jury of
laypersons, the “misleadingly pristine” evidence produced by computers may well be treated as
dispositive of guilt. See Thomas v. United States, 914 A.2d 1, 16–17 (D.C. 2006) (describing evidence
produced by computers but insulated from adversarial testing as “misleadingly pristine”); Bratus et al.,
supra note 14, at 400 (describing jury’s likelihood of ascribing great weight to such evidence in
determining guilt).
 214. Washington v. Texas, 388 U.S. 14, 22 (1967).

208 CALIFORNIA LAW REVIEW [Vol. 105:179

Equating computer programs with objectivity and presuming computer output
as automatically worthy of belief fall squarely within the prohibitions of
Washington.

The categorical presumption that evidence produced by computer
programs is automatically objective also runs contrary to Rock v. Arkansas.
Rock refines Washington’s holding by prohibiting categorical judgments when
individualized determinations of reliability are possible.215 Notably, Rock’s
prohibition still applies even when there may be legitimate reasons to support a
presumption.216 And since the reliability of computer programs can easily be
determined in a particular, individualized sense, such presumptions of
reliability run afoul of Rock. In essence, source code review is the substantive
equivalent to a basic bias cross-examination. Categorical restrictions on access
to source code are therefore as aberrant to the Constitution as categorical
prohibitions on cross-examining a class of witnesses.217

Unlike the presumptions in Rock and Washington, the presumptions
related to source code are typically favorable—courts treat evidence produced
by computers as presumptively reliable rather than presumptively unreliable.
Nonetheless, the rationales that motivated Rock and Washington apply with
equal force to the favorable presumptions related to source code. Both the
explicit holdings and the justificatory rationales prohibit categorical judgments
about evidence, and neither the holdings nor the rationales hinge on whether
the categorical judgments are favorable or unfavorable.218 Further, the
consequence of applying a categorical presumption of reliability to source code
evidence is identical to the consequences disclaimed by the holdings in Rock
and Washington. Specifically, application of the presumption of reliability
results in the exclusion of evidence material to the defense and insulates the
prosecution’s evidence from testing. That exact result is expressly prohibited
by both holdings.219 To the extent that the Court took issue with insulation and
wrongful exclusion, both favorable and unfavorable presumptions of reliability
raise the same problems.

A variation on the relevance rationale is that defendants must make a
“particularized showing” that the source code is especially relevant to a
specific defendant.220 This heightened threshold is arbitrary because it fails to

 215. When, as a matter of law, a category of evidence is unreliable, it may be excluded. See
generally United States v. Scheffer, 523 U.S. 303 (1998) (excluding polygraph tests as demonstrably
unreliable).
 216. The Rock Court openly acknowledged that hypnotic memory refreshing was “in its
infancy,” and that there may even be substantial reasons to consider the field unreliable. Rock v.
Arkansas, 483 U.S. 44, 61 (1987). It rejected each of these acknowledgments as a basis for per se
categorical evidentiary exclusions of hypnosis evidence, however, because individualized
determinations of reliability were possible. See id.
 217. See id.
 218. See id.; Washington, 388 U.S. at 22.
 219. See Rock, 483 U.S. at 57; Washington, 388 U.S. at 23.
 220. Short, supra note 103, at 187 n.96.

2017] A “SOURCE” OF ERROR 209

advance any proportionately legitimate state interest.221 As described earlier in
this Section, the inherent human flaws in computer programming are
independently sufficient to establish relevance because those flaws give rise to
serious challenges to the reliability of the prosecution’s evidence and can only
be conclusively vetted by examining the source code. The categorical
imposition of an additional, heightened threshold thus fails to advance any
relevance-related state interest and is therefore arbitrary. The arbitrariness of
imposing a heightened threshold on already-relevant evidence is thrown into
especially sharp relief by applying such a principle in any other area of
criminal law. For example, it would be unimaginable to demand that
defendants prove a jailhouse informant was particularly suited to lie before
permitting a bias cross-examination of the informant. It would be unimaginable
to demand that defendants prove a police officer was especially untrained
before permitting a qualification-driven cross-examination of the officer. It is
similarly unjustifiable to demand particularized showings of defendants before
they may vet the computer programs used to produce evidence against them.

Not only is such a threshold unjustifiable—it is impossible to meet. It
requires tortured mental gymnastics to demand that defendants demonstrate
particularized discrepancies as a prerequisite to obtaining the evidence that
could demonstrate particularized discrepancies. Defendants cannot provide
evidence of particularized discrepancies without access to the particulars of the
pertinent program. In that sense, even if identification of a relevant and
legitimate state interest was possible, such an interest could not be
proportionately served by imposing an impossible requirement.

2. The Trade Secret Rationale

The trade secret rationale justifies prohibiting defendants from accessing
source code on the ground that the source code is a proprietary trade secret.
This rationale is unpersuasive as a proportionate and legitimate state interest
for four reasons. First, trade secret status can only be determined based on
disclosure of source code. Second, purely private pecuniary interests have
never been recognized as legitimate state interests in this context. Third, every
state has an “injustice” exception to trade secret discovery applications, and

 221. The particularized relevance requirement is arguably also unconstitutionally arbitrary as
applied in existing jurisprudence because of the degree to which the heightened requirement is
underspecified. To date, no court that has relied on a heightened threshold to deny a defendant access
to source code has detailed what a particularized showing might entail, even when defendants offer
significant details related to anticipated source code discovery. See id. at 186. The ironic lack of
judicial particularity in the particularized-relevance requirement allows courts to hide behind the black
box of “more specificity,” without regard for when “more” is satisfied. It is difficult to describe the
discretionary floating goalposts of juridical whim as anything other than arbitrary. However, because it
is conceptually possible to outline a concrete degree of specificity, this challenge to such heightened
thresholds is properly levied as an applied challenge, rather than as a facial constitutional attack.

210 CALIFORNIA LAW REVIEW [Vol. 105:179

that exception compels disclosure. Fourth, protective orders alleviate any
residual concerns relating to the protection of proprietary information.

First, disclosure of source code is key to the threshold determination of
whether source code actually qualifies as a trade secret. Such a determination
cannot be made without disclosure of the source code. To qualify as a trade
secret, information must (1) not be generally known (or knowable), (2) bring
economic value to the party claiming trade secrecy, and (3) be subject to
reasonable precautions to keep the information secret.222 If information is either
already known or is even “readily ascertainable,” trade secret protection does
not apply.223

Many private programming companies rely heavily on publicly available,
open-source code that they integrate into their private, proprietary software.224
Many programs also rely on segments of code, algorithms, or software
organizations that are publicly available industry standards.225 Programs built
on a patchwork of open-source code and generally known information merit
limited trade secret protection or may not merit protection at all.226

A claim of trade secret protection for source code was defeated on
precisely that ground after the New Jersey Supreme Court compelled disclosure
of the source code for the Alcotest 7110.227 The court ordered that the code be
disclosed to an independent software house that found, among other things, that
the source code was entirely composed of general algorithms that did not merit
trade secret protection.228 Concerning contract clauses in some of the program
licenses magnify the concern that source code is little more than an assemblage
of unoriginal information. For example, the owners of the Intoxilyzer software
expressly do not warranty that the code is original or that it “shall be free from
infringement of patent, copyright or other intellectual property right claims.”229
Apparently, the Intoxilyzer owners are concerned enough that their software is
unoriginal copying that they demand a bargained-for release in their contracts.
It seems reasonable that defendants might share their concerns.

 222. See, e.g., 18 U.S.C. § 1839(3)(B) (2012); Metallurgical Indus. Inc. v. Fourtek, Inc., 790
F.2d 1195, 1199 (5th Cir. 1986).
 223. 18 U.S.C. § 1839(3)(B). The standard for the degree of publicity sufficient to vitiate a
trade secret varies between states. Compare id., with CAL. CIV. CODE § 3426.1(d)(1) (2012) (removing
the Uniform Trade Secret Act’s “readily ascertainable” requirement).
 224. See Steven Vaughan-Nichols, It’s an Open-Source World, ZDNET (Apr. 16, 2015),
http://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-
software [http://perma.cc/TAK7-PUVB] (noting that over two-thirds of businesses build private,
proprietary software using open-source code).
 225. See Short, supra note 103, at 190.
 226. See id.
 227. See id.
 228. See id.
 229. Leslie Sammis, What If the Punch Line Is—CMI Doesn’t Have the Source Code?,
SAMMIS DUI BLOG (July 17, 2010), https://tampaduiattorney.wordpress.com/2010/07/17/what-if-the-
punch-line-is-cmi-doesnt-have-the-source-code [https://perma.cc/84LJ-9UG9]; Short, supra note 103,
at 191 (quoting CMI, Inc.’s Standard Software License Agreement—Restricted).

2017] A “SOURCE” OF ERROR 211

Denying access to source code on trade secret grounds, without giving the
defendant the means to contest the initial trade secret designation, essentially
amounts to an incorrect, categorical determination that source code is per se a
trade secret. Such a determination constitutes an a priori judgment that source
code is always a trade secret and thus falls within the prohibitions of
Washington. It also prevents an individualized determination of trade secret
status as contemplated by Rock. Equating unexamined source code with trade
secrets per se also violates Holmes’s prohibition on favorably crediting
prosecution evidence. Simply relying on the word of the prosecution (or their
business associate) to determine trade secret status favorably and improperly
credits the evidence without subjecting it to scrutiny. And to the extent that
trade secret protection functions as cover for impeding defendant access to
source code, such protection violates Crane and strips the defendant of access
to “critical evidence” that is central to the defense.

Second, the purely private pecuniary interests of software companies are
likely not sufficiently weighty interests to outweigh the fundamental rights of
criminal defendants.230As noted in the next Section, states have repeatedly
distanced themselves from ownership of source code in an effort to avoid
discovery rules.231 In essence, states claim they have no legal interest in the
source code, and therefore cannot be compelled to give what they lack.

Such an assertion is unintentionally damning to the weight of the trade
secret interest. By deliberately distancing themselves from association with and
interests in the source code, states have narrowed—if not estopped
completely—their ability to claim that trade secret protection of the source
code is a state interest as opposed to a purely private interest. And no case in
the history of the Supreme Court has held that an interest that is both purely
private and purely pecuniary is “legitimate” enough to justify curtailing a
defendant’s fundamental right to present a complete defense. Curtailing such a
fundamental right is only justified in pursuit of a legitimate end, and no
jurisprudence suggests that the profit margins of a private corporation
constitute such an end. Exploring the full precedential consequences of
weighing private corporate pecuniary interests over the due process rights of
criminal defendants is beyond the scope of this Note, but even preliminary
considerations of those consequences seem unsettling to say the least.232

 230. See Chambers v. Mississippi, 410 U.S. 284, 295 (1973) (noting that this fundamental right
will only “bow to accommodate” an interest if it constitutes one of the “legitimate interests in the
criminal trial process”).
 231. See infra Part III.A.3.
 232. Putting corporate interests at parity with due process rights likely spells the end of the
latter. Especially given the relative size, power, and social significance of major corporations relative
to any individual human, it is difficult to imagine a scenario where the due process rights of one
individual outweigh even the tangential interests of a corporation in a world where the two have equal
weight and significance.

212 CALIFORNIA LAW REVIEW [Vol. 105:179

Third, every state has a lenient “injustice exception” to the statutory grant
of privilege from discovery afforded to trade secrets.233 While the precise
wording varies from state to state, the injustice exceptions substantially suggest
that trade secret privilege from discovery exists only “if the allowance of the
privilege will not tend to conceal fraud or otherwise work injustice.”234 The
injustice exception is aimed at preventing the mere “possibility that a party will
not be able to effectively litigate its case because relevant information is being
withheld by the other side.”235 This extremely low bar must be “broadly
construe[d]” by courts in favor of discovery in order to prevent a party from
sheltering its evidence from judicial inquiry.236 If there is any issue for which
“judicial resolution is not possible without permitting the requested discovery,”
that discovery is compelled.237

It is difficult to understate how widely the injustice exception has been
applied. For example, one seminal civil case construing the injustice exception
compelled the disclosure of Coca-Cola’s secret formula for its signature
drink.238 While recognizing the “legendary barriers” put up by the Coca-Cola
company, the federal court held that such barriers “must fall” since the
evidence was needed “to determine the truth in these disputes.”239 Because
“nothing is sacred in civil litigation,” even centuries-old “legendary” trade
secrets must be disclosed if they are needed by a party to effectively litigate.240
And trade secrets that fall in civil litigation where mere money is at issue must
certainly fall in criminal litigation where human life and liberty are on the line.

A criminal defendant’s discovery demand for source code easily falls
within the injustice exception. Source code is the only vehicle for “judicial
resolution”241 of every issue from the presence of implicit bias to the applied
consequences of software rot. It is also necessary for a defendant to
“effectively litigate”242 issues of error embedded in the program. Crucially,
even if alternative avenues of defense exist, the injustice exceptions demand
disclosure of source code if those avenues are not “effective[]” relative to a
direct attack on the computer program.243

 233. JEROME G. SNIDER ET AL., CORPORATE PRIVILEGES AND CONFIDENTIAL INFORMATION
§ 8.02[1] (2011).
 234. CAL. CIV. CODE § 1060. Compare, e.g., id., with SNIDER ET AL., supra note 233.
 235. Joint Stock Soc’y v. UDV N. Am., Inc., 104 F. Supp. 2d 390, 408 (D. Del. 2000).
 236. Upjohn Co. v. Hygieia Biological Labs., 151 F.R.D. 355, 358–59 (E.D. Cal. 1993).
 237. Id. at 358.
 238. See Coca-Cola Bottling Co. of Shreveport v. Coca-Cola Co., 107 F.R.D. 288, 290 (D. Del.
1985).
 239. Id.
 240. Id.; see also Joint Stock Soc’y, 104 F. Supp. 2d at 408 (“[T]he ‘fraud’ or ‘injustice’ which
[the injustice exception] is intended to prevent, especially during the pre-trial stage, is the possibility
that a party will not be able to effectively litigate its case because relevant information is being
withheld by the other side.”).
 241. Upjohn Co., 151 F.R.D. at 358.
 242. Joint Stock Soc’y, 104 F. Supp. 2d at 408.
 243. Id.

2017] A “SOURCE” OF ERROR 213

Injustice exceptions are not designed to give litigants the bare minimum
possible for satisfactory litigation but are instead intended to ensure the robust
and thorough litigation of all material issues such that justice is achieved.244
Thus, even defendants who have strategic options other than evaluation of
source code may still be entitled to overcome trade secret protection via the
injustice exceptions. And to the extent that injustice exceptions represent
settled legislative judgments that trade secret protection must give way in the
face of potential injustice, judicial circumvention of these legislative judgments
by affording trade secret protection anyway does not proportionately serve the
legitimate interests of the justice system.

Fourth, even robust trade secret protection of a source code need not
vitiate a defendant’s access to it because of judicial protective measures.245
Unsurprisingly, courts have been grappling with the general discovery of trade
secrets in civil litigation for decades.246 Furthermore, courts have developed
numerous mechanisms to protect the interests of the trade secret holder without
jeopardizing the interests of the opposing litigant.247 These mechanisms include
in-camera review, carefully crafted protective orders, trade secret analysis by
mutually agreed-upon third parties, and more.248 Thus, even when confronted
with a valid trade secret, courts should not deny defendants access to source
code. Instead, they should permit access to source code under the protective
auspices of judicial oversight.249 No rational reason exists for criminal
litigation to ignore the insight and wisdom of a half-century of trade secret
discovery law. Accordingly, courts that deny access to source code outright
instead of relying on existing protective mechanisms are arbitrarily and
indefensibly preventing defendants from accessing crucial evidence.

3. The Nonpossession Rationale

The final dominant rationale for denying defendants access to source code
is nonpossession of the source code by the state. Several states have suggested
that they lack possession of the source code at issue and therefore cannot give

 244. See Coca-Cola Bottling Co., 107 F.R.D. at 290.
 245. See WILLIAM F. MERLIN, JR., GUNN MERLIN, OVERCOMING ALLSTATE’S TRADE

SECRETS AND WORK-PRODUCT OBJECTIONS 1, 27 (2000), http://goo.gl/O8sl5q [https://perma
.cc/T552-YFZ3].
 246. See, e.g., id.; Kevin R. Casey, Identification of Trade Secrets During Discovery: Timing
and Specificity, 24 AIPLA Q.J. 191, 196 (1996); James R. McKown, Discovery of Trade Secrets, 10
SANTA CLARA HIGH TECH. L.J. 35, 36 (1994).
 247. See, e.g., MERLIN, supra note 245; see Casey, supra note 246; see also McKown, supra
note 246.
 248. See McKown, supra note 246, at 45.
 249. At least one court has done precisely that. House v. Kentucky, No. 2007-CA-000417-DG,
2008 WL 162212 (Ct. App. Jan. 18, 2008) (noting that a protective order “should obviate any
concern” that a company may have “with respect to protection of its source code”).

214 CALIFORNIA LAW REVIEW [Vol. 105:179

what they do not have.250 In at least one state, avoiding possession of program
source code appears to be a deliberate strategic calculation to assist
prosecutors. In Florida, law enforcement deliberately avoided acquiring
possession of the source code for the Intoxilyzer despite both an opportunity to
gain it and the requests of Florida’s defense bar.251 And “[a]s a result the State
c[ould] conveniently assert that it neither actually nor constructively
possesse[d] the source code.”252 Creating the opportunity for technical and
willful subversion of the rights of defendants certainly smacks of the technical
rules “applied mechanistically to defeat the ends of justice” that the Supreme
Court has repeatedly disavowed.253

Whether possession is willfully avoided or not, courts should not
condition a defendant’s rights on a state’s discretionary and potentially
arbitrary choices. Indeed, because states may exercise their discretion
arbitrarily, there is no bulwark to prevent a defendant’s rights from being
arbitrarily abridged, which seems to run afoul of the right to present a complete
defense. In these situations, courts should condition admission of evidence
produced by programs on disclosure of the source code. The prosecution has no
absolute obligation to tender source code to the defense, but failure to do so
should preclude the introduction of evidence produced by programs. In such a
case, nothing limits the prosecution from relying on other evidence to meet its
burden. Failing to condition admission on disclosure affords an arbitrary
evidentiary advantage to the prosecution by insulating their evidence from the
only means of testing. Thus, to reap the fruits of computer-produced evidence,
the prosecution must pay the cost of adverse testing by a defendant. The
alternative is to leave the fundamental rights of defendants up to the arbitrary
discretion of states.

Finally, states cannot have their cake and eat it too. Although states may
be financially interested in avoiding possession of source code, they do not
have a legitimate interest in doing so when they simultaneously rely on
programs—and thus their source code—in litigation. It is relatively easy for
states to obtain access to source code, and several states have already done
so.254 As a consequence, the choice not to seek possession of source code while
still knowingly introducing evidence from computer programs is an unjustified
obstacle to defendant source code discovery. It is thus also an infringement on
the defendant’s right to present a complete defense.

 250. See, e.g., Moe v. State, 944 So. 2d 1096, 1097 (Fla. Dist. Ct. App. 2006); Strutin, supra
note 195 (surveying cases relying on nonpossession).
 251. See Short, supra note 103, at 195.
 252. Id.
 253. Chambers v. Mississippi, 410 U.S. 284, 302 (1973).
 254. See, e.g., Source Code, supra note 102, at 525 (describing Minnesota’s contract with a
DUI software company, which assigned intellectual property rights in the source code to Minnesota);
Thomas E. Workman, Jr., Massachusetts Breath Testing for Alcohol: A Computer Science
Perspective, 8 J. HIGH TECH. L. 209, 227 (2008).

2017] A “SOURCE” OF ERROR 215

B. Daubert and Frye Compel Disclosure

All states impose some version of reliability testing as the minimum
threshold for permitting expert evidence.255 Federal courts follow the Supreme
Court’s holding in Daubert v. Merrell Dow Pharmaceutical256 and its
progeny.257 Daubert revolutionized the analysis of expert evidence by relying
on the newly promulgated Federal Rule of Evidence 703 to create a flexible
four-factor test for admissibility.258

Daubert is not universal in reach, however. Some states have adopted
Daubert, while others rely on its historical predecessor,259 the D.C. Circuit case
Frye v. United States.260 Frye’s relatively straightforward standard evaluates
whether the scientific testimony being proffered for admission is generally
accepted in the pertinent professional field or fields.261 If the testimony relies
on science that is generally accepted, then it is admissible.262 If the testimony is
not supported by science that is generally accepted in the pertinent fields, the
testimony is inadmissible.263

Still, other jurisdictions rely on various mixtures of the two tests.264 These
jurisdictions combine Daubert and Frye in numerous ways to form new, joint
tests.265 These tests may borrow from Daubert and Frye equally, or they may
incorporate more elements of one decision than the other.266 To the extent they
are joint standards, though, evidence that would be prohibited by both Frye and
Daubert necessarily is prohibited by the joint tests as well.267 This Section
argues that all three categories of standards preclude the introduction of
evidence produced by computer programs without prior disclosure of the
program’s source code.

As a framing observation, it is crucial to note that the reliability inquiry
must take place at two levels: concept and implementation.268 For example,
modern forensic analysts use computer programs to implement a concept called
DNA amplification, which takes degraded samples of DNA and attempts to

 255. See Bernstein & Jackson, supra note 141, at 351.
 256. See Daubert v. Merrell Dow Pharm., Inc., 509 U.S. 579 (1993).
 257. See Bernstein & Jackson, supra note 141.
 258. See Daubert, 509 U.S. at 585.
 259. See Bernstein & Jackson, supra note 141.
 260. See 293 F. 1013 (D.C. Cir. 1923).
 261. See id.
 262. See id.
 263. See id.
 264. See Bernstein & Jackson, supra note 141.
 265. See id.
 266. See id.
 267. A combination of two rejections necessarily produces a third rejection, regardless of how
the initial two rejections are combined. See also infra Part III.B.3.
 268. The distinction between concept and implementation explains how CyberGenetics can
own patents on the methods embodied in the TrueAllele source code without patenting the source code
itself. See Technology Patents, CYBERGENETICS, https://www.cybgen.com/information/patents.shtml
[https://perma.cc/CZ7T-RW24] (last visited Sept. 30, 2016).

216 CALIFORNIA LAW REVIEW [Vol. 105:179

copy them.269 Before admitting a DNA match based on DNA amplification
techniques, a court should make two determinations: (1) whether the concept of
DNA amplification is reliable (e.g., it does not distort or manipulate the DNA
sample by causing the artificial presence or absence of DNA allelic
markers);270 and (2) whether the computer has actually implemented the
concept of DNA amplification in a reliable manner (e.g., the program does not
omit any steps in the amplification process). The first level of the reliability
determination deals with chemical and biological sciences. The second level,
however, falls squarely within the field of computer science. Thus, a chemistry
method that is conceptually reliable may be implemented by computer
scientists in an incorrect or unreliable manner. To date, it appears that courts
have conflated the two levels of the reliability inquiry.271 No court has
explicitly undertaken a two-level reliability analysis when dealing with expert
evidence produced by computers.

1. The Daubert Inquiry

The Daubert inquiry expressly contemplates four flexible criteria that
bear on the reliability of expert testimony: falsifiability, error rate, peer review,
and general acceptance within the pertinent field of expertise.272 All four
criteria can be coherently applied to source code, and each tends to support
disclosure as a requisite to a finding of reliability.

The term falsifiability refers to the ability of a concept to be tested and
determined to be true or false.273 Certain concepts are not capable of empirical
measure, while others are capable of such measure.274 For example, the
hypothesis that gravity pulls objects with mass towards the ground can be
tested by dropping various objects and seeing how they behave. If a concept is
capable of empirical testing, the Daubert analysis deems it more reliable
because it can be independently validated or refuted.275

It is quite easy to test whether a computer program works. Users can
anecdotally test computer programs, but programs can also be tested
systematically through the use of error-testing programs.276 In essence, these

 269. See, e.g., Erin Murphy, The Art in the Science of DNA: A Layperson’s Guide to the
Subjectivity Inherent in Forensic DNA Typing, 58 EMORY L.J. 489, 498 (2008).
 270. See id.
 271. See, e.g., People v. Superior Court (Chubbs), No. B258569, 2015 WL 139069, at *7 (Cal.
Ct. App. Jan. 9, 2015) (conflating program’s conceptual methodology and “underlying mathematical
model” with implementation) (internal quotation marks omitted).
 272. See Daubert v. Merrell Dow Pharm., Inc., 509 U.S. 579, 593–94 (1993).
 273. See id. at 593.
 274. See id. (noting that falsifiability “is what distinguishes science from other fields of human
inquiry”) (internal quotation marks omitted).
 275. See id.
 276. See, e.g., CHRISTEL BAIER & JOOST-PIETER KATOEN, PRINCIPLES OF MODEL CHECKING,
at xiii (2008) (describing “a formal verification technique” that identifies error “through systematic
inspection of all states” of the program).

2017] A “SOURCE” OF ERROR 217

programs are the equivalent of automated beta testers.277 However, if the
source code is not available, it is impossible to fully test the program for coding
errors.278 Falsifiability, thus, turns on the disclosure of the source code. If the
source code is not disclosed, falsifiability militates against admission of the
evidence.

The second factor, error rate, refers to the known rate at which errors
occur and the existence of methods for limiting those errors.279 The Daubert
inquiry deems scientific techniques with a known error rate to be more reliable
because the potential for mistakes can be quantified, analyzed, and
controlled.280 Because of the significance of errors for computer programs,
computer scientists have developed an enormous number of techniques for
estimating and managing error rates.281 Error rates can be estimated based on a
number of heuristics, including age of code,282 program complexity,283 and
other technical factors.284 However, access to the source code is a prerequisite
to determining program-specific error rates.285 This is because code that “has
not been tested or used will reveal no faults, irrespective of its size, complexity,
or any other factor.”286 In other words, estimates of a program’s error rate are
possible, but only upon actual inspection of the program.287

The third factor, peer review and publication, is applied by determining
whether a particular technique has been scrutinized academically and
published.288 The rigorous examination of particular techniques and the
subsequent publication of those techniques function as a probabilistic proxy for
validity.289 Thus, the Daubert inquiry treats techniques and processes that have
been published as more reliable.290 In the context of computer science, program
code may also be subject to peer review by reference to the well-established

 277. See id. Notably, like beta testers, error-testing programs are imperfect solutions. For that
reason, an unidentified number of errors likely exists even after error-testing programs are utilized.
 278. See supra Part II.B.
 279. See Daubert, 509 U.S. at 594.
 280. See id.
 281. See generally supra Parts II.B.2–3 (discussing probabilistic indicators of program error
rates).
 282. See generally Todd L. Graves et al., Predicting Fault Incidence Using Software Change
History, 26 IEEE TRANSACTIONS ON SOFTWARE ENG’G 653 (2000) (quantifying rate of “decaying
code” over life cycle of a program).
 283. See generally Stephen G. Eick et al., Estimating Software Fault Content Before Coding,
INT’L CONF. ON SOFTWARE ENG’G 59–65 (1992) (using econometrics to probabilistically calculate
program error rates).
 284. See generally Norman E. Fenton & Niclas Ohlsson, Quantitative Analysis of Faults and
Failures in a Complex Software System, 26 IEEE TRANSACTIONS ON SOFTWARE ENG’G 797 (2000)
(identifying quantifiable factors that generally bear on calculating error rates).
 285. See id.
 286. Id.
 287. See id.
 288. See Daubert v. Merrell Dow Pharm., Inc., 509 U.S. 579, 593–94 (1993).
 289. See id.
 290. See id.

218 CALIFORNIA LAW REVIEW [Vol. 105:179

body of scientific principles for computer scientists.291 Of course, a comparison
between the source code and scientific standards presupposes the disclosure of
the source code. Peer review can only occur when peers in the field actually
review the program’s source code.

Finally, general acceptance within the pertinent field—here, within the
field of computer science—can be determined in a variety of manners. For
example, a court could determine whether there is general acceptance of the
source code’s chosen programming language, programming methods, and
programming tools.292 For source codes that remain secret, this factor likely
always cuts against admissibility because it is difficult for a field to accept that
which it does not know.

2. The Frye Inquiry

The Frye inquiry centers on a much simpler method than Daubert, and
instead determines the “general acceptance” of the technique or concept at
issue within the pertinent scientific community.293 As noted above, Frye
jurisdictions confronted with computer programs must ask two questions: (1)
whether the conceptual process embodied in the program is accepted in its
pertinent field, and (2) whether the underlying programmed implementation is
accepted by experts in the field of computer science.

This analysis cannot be done without prior disclosure of the source code.
The Frye standard expressly contemplates knowledge of the methods in
question.294 In the case of source code, it is impossible for computer scientists
to determine the acceptability of something they have never seen. Nor should
courts treat declarations from the owner of the proprietary software—who has a
pecuniary interest in the software’s admissibility—as sufficient to demonstrate
general acceptance under Frye. In other words, even if a software owner claims
to use a particular accepted methodology, this alone should not suffice to
satisfy the Frye inquiry. Relying on the declarations of the software’s owner,
without more, essentially substitutes the court’s judgment for deference to the
unreviewed, unreviewable determination of a private party with a partisan
interest in the outcome.

 291. See Michael Hicks, Peer Review, and Why It Matters, PROGRAMMING LANGUAGES

ENTHUSIAST (Aug. 14, 2014), http://www.pl-enthusiast.net/2014/08/14/peer-review-matters
[http://perma.cc/BCB3-XMX6] (detailing the “peer review process . . . in scientific research about
programming languages”).
 292. See, e.g., Robert Green & Henry Ledgard, Coding Guidelines: Finding the Art in the
Science, 9 ACMQUEUE 1 (2011), http://queue.acm.org/detail.cfm?id=2063168
[https://perma.cc/YC7B-H33B]. Notably, even general acceptance of a program’s language and
concepts does not equate to acceptance of the program’s implementations, in the same way that one
can laud the English language and iambic pentameter conceptually without endorsing every book
written in English as the newest iteration of Shakespeare.
 293. Frye v. United States, 293 F. 1013, 1014 (D.C. Cir. 1923).
 294. See id.

2017] A “SOURCE” OF ERROR 219

3. The Inquiry Under Mixed Standards

Both Daubert and Frye appear to require the disclosure of source code in
order to apply the respective tests from each case. Mixed tests that combine the
two thus also appear to require disclosure of source code. It is difficult to
imagine any test of reliability that could operate without disclosure of the
subject of inquiry. Given that these standards are a combination of Daubert and
Frye, which both appear to compel disclosure of source code, it would be
difficult for any mixed standard to produce a different result. In short, “I don’t
know what it is, but I know it’s reliable!” is a hard sale for any test.

C. The Confrontation Clause Compels Disclosure

In 2004, the Supreme Court reinvigorated the debate over the
Confrontation Clause’s meaning and scope with its ruling in Crawford v.
Washington.295 Guided by a lengthy historical analysis, Crawford focused the
Confrontation Clause inquiry on whether the challenged statements are
“testimonial” in nature.296 While leaving a defined scope of “testimonial”
hearsay “for another day,” Crawford “impose[d] an absolute bar to statements
that are testimonial, absent a prior opportunity [for the defendant] to cross-
examine” the declarant.297 Crawford noted that “testimonial” hearsay certainly
included a “solemn declaration or affirmation”298 and “statements that were
made under circumstances which would lead an objective witness reasonably to
believe that the statement would be available for use at a later trial.”299

The Supreme Court again addressed testimonial hearsay five years later in
Melendez-Diaz v. Massachusetts.300 In Melendez-Diaz, the trial court admitted
forensic reports indicating the presence of drugs without compelling the
analysts who created the reports to testify.301 The Court found this to be error,
reasoning that the forensic reports were essentially affidavits prepared in
anticipation of trial.302 Importantly, the Court’s holding expressly rejected the
State’s suggestion that the evidence was “neutral, scientific testing.”303 The
Court cautioned that cross-examination of forensic analysts was necessary to
determine whether “their results required the exercise of judgment or the use of
skills that the analysts may not have possessed.”304 In short, because “forensic
evidence is not uniquely immune from the risk of manipulation,”305

 295. 541 U.S. 36 (2004).
 296. Id. at 53.
 297. Id. at 61.
 298. Id. at 51 (internal quotation marks omitted).
 299. Id. at 52 (internal quotation marks omitted).
 300. 557 U.S. 305 (2009).
 301. Id. at 311.
 302. Id.
 303. Id. at 317.
 304. Id. at 320.
 305. Id. at 318.

220 CALIFORNIA LAW REVIEW [Vol. 105:179

confrontation is required “to weed out not only the fraudulent analyst, but the
incompetent one as well.”306

Though Melendez-Diaz dealt with forensic scientists, its rationale applies
with equal force to computer scientists. Much like forensic evidence, evidence
produced by computers “is not uniquely immune from the risk of
manipulation;” it may require “the exercise of judgment” in coding; it may
involve “the use of skills” that the programmers lacked; and it involves risks
from both “fraudulent” and “incompetent” programmers.307 When a forensic
report is the output of a computer program, it is thus a joint statement308—one
composed of the interaction between the statements of the programmer and the
input of the program user.

Computer programs appear to complicate the Crawford analysis because
they obscure the human declarant of the statements embedded in the program.
Though computer programs present the, often convincing appearance of
autonomous functioning, it cannot be emphasized enough that this appearance
is an illusory fiction. Computer programs do not act except at the beck and call
of human programmers, and even then their actions are limited to the precise
commands of the programmer.

Thus, when the Supreme Court of New Jersey framed the Crawford
inquiry by explaining that “the only ‘witness’ confronting a defendant is a
machine,”309 it erred egregiously. The court fell prey to the illusion that a
computer program has the capacity to act autonomously. A computer program,
however, is merely a tool—and like a hammer, a saw, or a wrench, it cannot act
independently of the human action that commands it.310 In essence, when a
computer “speaks,” it is only representing the initial will, thoughts, directions,
and assertions of its programmer. All output from a computer program
constitutes a statement that is authored (at least in part) by the computer
scientist.

Nor can the programmer be excused from confrontation because the
programmer is not a witness against the defendant. The U.S. Supreme Court
squarely rejected an identical argument in Melendez-Diaz v. Massachusetts,
noting:

 306. Id. at 319.
 307. See id. at 318–20.
 308. A future paper should consider whether insights from copyright cases on joint authorship
could bear on jointly authored statements in criminal law. Cf. Aalmuhammed v. Lee, 202 F.3d 1227
(9th Cir. 2000).
 309. State v. Chun, 943 A.2d 114, 136 (N.J. 2008).
 310. As technology advances, computer programs may eventually begin writing some of their
own source code. This advent does not change the analysis, however, because the programs only write
new code at the instruction of and in the manner specified by a human programmer. In other words,
the computer only knows how to code (and what to code) because it is following the instructions of the
human programmer. The computer’s activities, even in generating code, are thus circumscribed by the
instructions given by the human programmer. In other words, the program’s coding activities are still
fundamentally tethered to a human being’s subjective judgment.

2017] A “SOURCE” OF ERROR 221

The text of the Amendment contemplates two classes of witnesses—
those against the defendant and those in his favor. The prosecution
must produce the former; the defendant may call the latter. Contrary to
respondent’s assertion, there is not a third category of witnesses,
helpful to the prosecution, but somehow immune from
confrontation.311

Thus, the Confrontation Clause includes the forensic scientist as readily as the
computer scientist.

III.
JUDICIAL AND LEGISLATIVE SOLUTIONS

A. Judicial Solutions

Courts are well situated to alleviate the most direct issues with admitting
evidence produced by computers without compelling disclosure of source code.
There are five steps that courts can take when dealing with computer programs.
The first step is to unravel the presumption of reliability typically afforded to
computer programs, and instead subject computer programs to the same testing
as every other form of forensic evidence used in the criminal justice system.
For example, courts should determine—rather than assume—whether programs
are reliable, whether they are accurate, whether they have errors, and whether
they constitute trade secrets.

The second step is to compel disclosure of source code as a condition of
admissibility. Requiring disclosure of source code as a condition of
admissibility ensures that prosecutors cannot take advantage of the benefits of
computer programs without the programs being subjected to the rigors of
adversarial testing.312 By conditioning evidentiary admissibility on disclosure
of source code, courts ensure that program-produced evidence is always
accompanied by the opportunity for the defendant to meaningfully test it. Such
testing unambiguously improves the fairness and truth-seeking functions of
trial.313

The third step is to utilize the immense variety of tools developed by civil
litigators for handling discovery and litigation of trade secrets. Because civil

 311. 557 U.S. at 313–14. The Confrontation Clause therefore precludes approaches that
disclose the source code to a state-selected third-party evaluator instead of disclosing to the defendant,
because such approaches prevent the defendant from personally confronting the code. Even when
focusing on reliability, third-party disclosure is unlikely to rigorously test the evidence in the same
way the adversary system structurally tests evidence. See Metzger, supra note 37, at 2573.
 312. Such a requirement is consistent with well-established Supreme Court precedent. See
United States v. Nobles, 422 U.S. 225, 231 (1975) (affirming conditioning defense expert testimony
on disclosure of defense expert report prior to trial, since “[t]he ends of criminal justice would be
defeated if judgments were to be founded on a partial or speculative presentation of the facts”)
(internal citation omitted).
 313. See Taylor v. Illinois, 484 U.S. 400, 412 (1988) (describing the strong “public interest in a
full and truthful disclosure of critical facts”).

222 CALIFORNIA LAW REVIEW [Vol. 105:179

litigation has dealt with discovery of trade secrets in a much broader context
for a much larger amount of time, it is likely that the insights available in that
body of law will be useful to apply in criminal contexts.314 Courts can appoint
special independent evaluators, use narrowly tailored protective orders, and
conduct in-camera reviews to ensure that trade secrets are protected315 while
also respecting the fundamental rights of criminal defendants. And as noted
above, courts should evaluate whether trade secrets exist rather than simply
assuming that computer programs automatically constitute trade secrets.316

The fourth step courts can take when dealing with evidence created by
computer programs is to apply the Daubert and Frye inquiries at two levels—
concept and implementation—rather than one. As noted earlier, courts have
historically conflated the concepts underlying a computer program with the
actual implementation of the computer program.317 Such conflation obscures
the independent contributions of computer science to the production of
computer programs. Most computer programs are a combination of computer
science and another scientific field, and thus have two levels of reliability about
which courts should inquire. To analyze only half of the reliability inquiry is to
miss a quantitatively substantial and qualitatively significant portion of the
analysis.

Nor is new jurisprudential ground broken by applying well-settled
standards of rigor for expert evidence to both levels of computer programs.
Computer program implementation has essentially flown under the radar of
Daubert and its kin. This is functionally equivalent to an unintentional
exception to the reliability inquiry, borne out of judicial unfamiliarity with
computer science. Applying the reliability inquiry at both levels brings
computer programs in line with the broader body of decisions that attempt to
screen unreliable evidence by allowing programs to be fully vetted instead of
partially vetted.

The fifth step courts can take with regard to evidence produced by
computer programs is to avoid countenancing arguments that incentivize
gamespersonship. Specifically, courts should decline to excuse states from the
requirement to produce source code based on the nonpossession argument
outlined above.318 As the U.S. Supreme Court has recognized, broad discovery
“is a salutary development which, by increasing the evidence available to both

 314. See supra notes 245–49.
 315. UNIF. TRADE SECRETS ACT § 5 (UNIF. LAW COMM’N 1985) (explaining how courts may
protect “an alleged trade secret by reasonable means, which may include granting protective orders in
connection with discovery proceedings, holding in-camera hearings, sealing the records of the action,
and ordering any person involved in the litigation not to disclose an alleged trade secret without prior
court approval”).
 316. See supra Part II.A.2.
 317. See, e.g., supra note 268.
 318. See supra Part II.A.3.

2017] A “SOURCE” OF ERROR 223

parties, enhances the fairness of the adversary system.”319 Endorsing the
nonpossession argument gives prosecutors—and the states that negotiate
software contracts—an incentive to conveniently avoid possession of source
code, thus narrowly skirting discovery rules.320 The Supreme Court has never
looked favorably on discovery arguments that tend to inject game playing into
the truth-seeking functions of the trial process.321

B. Legislative Solutions

Legislatures are most effectively situated to address the economic and
business considerations that attend the production and disclosure of source
code. These considerations deal primarily with trade secret status and the
potential economic harms that might stem from disclosure of secret source
code. Legislatures can address these considerations in at least four ways.

First, legislatures could avoid the trade secret issue entirely by directly
funding the development of open-source computer programs.322 Open-source
software is software whose source code is publicly available and open to
scrutiny by the general public. Because of its transparency, open-source
software empirically and categorically has fewer errors and security concerns
than similarly situated programs that are privately developed.323 In addition to

 319. Taylor v. Illinois, 484 U.S. 400, 411 n.16 (1988).
 320. See supra Part II.A.3.
 321. The Court has forcefully and repeatedly disclaimed similarly inequitable nondisclosures
during discovery. See Taylor, 484 U.S. at 412 n.17 (“The adversary system of trial is hardly an end in
itself; it is not yet a poker game in which players enjoy an absolute right always to conceal their cards
until played.”).
 322. Legislatures could also simply use existing open-source programs. Open-source software
for breathalyzers is commonplace, and even complex software for DNA analysis exists readily and
accessibly. See, e.g., DOUGLAS BLAALID & BRANDON BEVANS, CAL. POLYTECHNIC STATE UNIV.,
BUDDY: A BREATHALYZER FOR IPHONE (June 2013), http://digitalcommons.calpoly.edu/cgi/
viewcontent.cgi?article=1228&context=eesp [https://perma.cc/RD63-XXD7] (publishing code for a
nonetheless proprietary breathalyzer); Sequence Analysis, BIOINFORMATICS ORG.,
http://www.bioinformatics.org/wiki/Sequence_analysis [https://perma.cc/2W79-LZVM] (last modified
Sept. 12, 2014). The interested reader could visit the Bioinformatics site, download one program to
sequence their DNA, and then download another to conduct a sequence analysis search—completely
for free. Sequence Analysis, supra.
 323. See, e.g., Matt Asay, The Reasons Businesses Use Open Source Are Changing Faster than
You Realize, READWRITE (Apr. 7, 2014) http://readwrite.com/2014/04/07/open-source-software-cost-
recruiting-participation [https://perma.cc/7PUJ-3686] (describing rapid commercial adoption of open-
source software for quality and economic benefits); Howard Baldwin, 4 Reasons Companies Say Yes
to Open Source, COMPUTERWORLD (Jan. 6, 2014), http://www.computerworld.com
/article/2486991/app-development-4-reasons-companies-say-yes-to-open-source.html
[http://perma.cc/76R9-AD4T] (explaining diverse economic benefits created by open-source software
use relative to proprietary use); Steven J. Vaughan-Nichols, Coverity Finds Open Source Software
Quality Better than Proprietary Code, ZDNET (Apr. 16, 2014), http://www.zdnet.com/article/coverity-
finds-open-source-software-quality-better-than-proprietary-code [https://perma.cc/GN3Y-P72B]
(“[T]he numbers don’t lie and the 2013 Coverity Scan Open Source Report found that open source had
fewer errors per thousand lines of code (KLoC) than proprietary software.”); Open Source Hardware
Can Improve IT and Reduce Costs, KEYINFO (Oct. 13, 2015), http://www.keyinfo.com/open-source-

224 CALIFORNIA LAW REVIEW [Vol. 105:179

simply being better software, open-source programs raise program quality by
increasing uniformity and standardization, which decreases costs for
maintenance and upkeep.324 Legislatures that select this option are more likely
to create sustainable software systems with long-term functionality that
ultimately conserves money.325

Second, legislatures that prefer not to develop their own software could
follow the examples of Minnesota and Arizona, and contractually purchase
intellectual property rights in an existing proprietary program’s source code.326
Interestingly, purchasing a license in an existing program empirically ends up
costing significantly more than simply developing open-source software.327
This remains true even when accounting for the costs of administration and
customization of existing open-source code.328

Third, the legislature could also function as an anchor customer for a
software company willing to disclose its source code.329 Under such a scheme,
the legislature would promise to exclusively purchase the software company’s
program for a term of years, thus “anchoring” the software project’s growth
and development.330 That term could be calculated to ensure the private
company receives a competitive return on its investment. In exchange, the state
would receive a license to use that software as well as its source code. While
the state would receive the right to use the software and source code
indefinitely, the company would be free to continue selling its product in other
venues.331 The guaranteed and substantial customer base combined with the
prospect of further sales to other actors thus incentivizes software companies to
disclose their source code.

Finally, legislatures could offer financial incentives for software
companies to disclose source code to the state and seek other legal protection

hardware-can-improve-it-and-reduce-costs [http://perma.cc/9HU9-L7ZS] (noting that 78 percent of
companies in the world rely on open-source software in their computer programs).
 324. See VERN BOLTON, SCHNEIDER ELEC., SOFTWARE STANDARDIZATION PROVIDES KEY

BENEFITS FOR MANUFACTURERS, OEMS (Aug. 2010), http://www.schneider-electric.us/documents
/solutions1/industrial-solutions/8000HO1067.pdf [https://perma.cc/J4KV-NV2Y].
 325. See supra note 322.
 326. See Workman, supra note 254, at 227.
 327. See MAHA SHAIKH & TONY CORNFORD, LONDON SCH. OF ECON., TOTAL COST OF

OWNERSHIP OF OPEN SOURCE SOFTWARE (2011), http://eprints.lse.ac.uk/39826/1/
Total_cost_of_ownership_of_open_source_software_(LSERO).pdf [https://perma.cc/87D2-LK2P].
 328. See id.
 329. See, e.g., Rebecca O. Bagley, An Entrepreneur’s Holy Grail: The Anchor Customer,
FORBES (Nov. 15, 2012), http://www.forbes.com/sites/rebeccabagley/2012/11/15/an-entrepreneurs-
holy-grail-the-anchor-customer [http://perma.cc/ET9U-HJKS] (describing how anchor customers can
help nascent projects develop into profitable ventures).
 330. See Randeep Sudan, The Basic Building Blocks of E-Government, in E-DEVELOPMENT:
FROM EXCITEMENT TO EFFECTIVENESS 79, 87 (Robert Schware ed., 2005) (describing the use of
government anchor customers to develop network software).
 331. For example, a company that sold the intellectual rights to a program could still profit by
providing technical support for it.

2017] A “SOURCE” OF ERROR 225

of their source code, such as copyright or patent protection.332 Unlike trade
secrets, copyright and patent protections do not rely on secrecy for protection
to extend to the subject matter at issue.333 Thus, software companies could
disclose the source code to defendants (and the public writ large) without
abrogating the software company’s intellectual property.334 These incentives
can come in the form of tax credits or any other options available to the
creative discretion of lawmakers.

C. Potential Objections

The core pragmatic objection to the solutions suggested above deals with
resource costs.335 Because legislatures and the judiciary often operate under
strict budgetary concerns, cost arguments—in terms of both expended finances
and expended time—are especially salient to policymakers and overworked
judges. Understandably, it is important to address the relationship between the
suggested solutions and potential risks.

There are three core rejoinders to the cost argument. First, any resource
expenditure is likely minimal because the suggested solutions fit neatly within
existing processes, norms, and infrastructures. Second, states are actually likely
to save considerable amounts of both money and time by adopting the
suggestions. Third, the weighty legal interests implicated by the nondisclosure
of source code outweigh any marginal resource losses both legally and
normatively.

First, the suggested solutions likely have minimal resource costs because
they all utilize existing tools and procedures. It is crucial to note as a framing
observation that every solution suggested constitutes a straightforward
extension of existing judicial and legislative processes. For example, there is
absolutely nothing novel about subjecting evidence to adverse testing,336
conditioning evidentiary admissibility to ensure reliability,337 applying

 332. See generally David S. Levine, Secrecy and Unaccountability: Trade Secrets in Our
Public Infrastructure, 59 FLA. L. REV. 135 (2007) (describing the merit of patent protection instead of
trade secret protection for potential trade secrets used in public infrastructure); Copyright v. Patent: A
Primer on Copyright and Patent Protection for Software, SOFTWARE PLURALISM,
https://www.law.washington.edu/lta/swp/law/copyvpatent.html [http://perma.cc/Z29V-EG3L] (last
visited Apr. 19, 2016) (explaining how patent and copyright can provide protection to software).
 333. In fact, copyright expressly protects public works and patents require detailed publication
of the work. See 17 U.S.C. § 106 (2012) (copyright grants exclusive right to reproduce, distribute, and
publicly display a work); 35 U.S.C. § 112(a) (2012) (valid patent must enable persons having ordinary
skill in the patent’s field of art to construct the patent on their own).
 334. See 17 U.S.C. § 106; 35 U.S.C. § 112(a).
 335. While objectors might also make arguments relating to relevance, trade secrets, and
nonpossession, those arguments are substantively and sufficiently addressed in Part III.A and need not
be repeated here.
 336. This is judicial solution one.
 337. This is judicial solution two.

226 CALIFORNIA LAW REVIEW [Vol. 105:179

preexisting civil litigation tools,338 holding Daubert hearings,339 and ensuring
that parties disclose required evidence.340 Nor are legislatures performing new
functions when they contract for software development,341 acquire intellectual
property rights through contract,342 support small businesses,343 or offer tax
incentives to support particular industries.344

This framing observation is both crucial and comforting because it
suggests that integrating these solutions requires marginal effort at most.
Instead of learning new processes, courts and legislatures are extending
familiar processes and applying familiar tools to new subject matter. There is
nothing remarkable about software that would disrupt these existing functions.
For a pointed example, courts are already holding evidentiary hearings
pursuant to Daubert. Adopting the solutions suggested herein will simply make
those hearings fairer.

Second, there are considerable reasons to believe that adopting these
solutions will actually save money and time for both legislatures and the
judiciary. The use of open-source software, statewide software, or both has
been linked to significant cost savings.345 A variety of improvements—
including the flexibility and quality improvement346 offered by open-source
software, combined with the decreased administrative costs of standardized
software347—are spurring a cross-industry commercial sprint toward
opensource software use.348 And the public sector is following quickly, with

 338. This is judicial solution three. Notably, this solution is specifically offered because it relies
on existing processes.
 339. This is judicial solution four.
 340. This is judicial solution five.
 341. This is legislative solution one.
 342. This is legislative solution two. Minnesota and Arizona have already demonstrated the
viability of this course of action by actually pursuing and completing it. See Workman, supra note
254, at 227.
 343. This is legislative solution three.
 344. This is legislative solution four.
 345. See BOLTON, supra note 324; Asay, supra note 323; Baldwin, supra note 323.
 346. See Erin E. Kenneally, Gatekeeping out of the Box: Open Source Software as a
Mechanism to Assess Reliability for Digital Evidence, 6 VA. J.L. & TECH. 13, 137 (2001) (“No longer
is reliability proactively made or reactively judged by professionals at the top of the food chain; rather,
the pool of potential independent third party validation is broadened.”).
 347. See Baldwin, supra note 323; Kenneally, supra note 346, at 103 (explaining that costs
decrease because “the software facilitates a common computing and communications infrastructure”).
 348. See Kate Rockwood, Using Open-Source Code Can Save You Half a Million Dollars—But
Do It Carefully, INC. (Apr. 2016), http://www.inc.com/magazine/201604/kate-rockwood/adopting-
open-source-software.html [https://perma.cc/CB4V-MQDZ] (“Today, nearly 80 percent of businesses
are running some part of their operations on open-source software, while 66 percent say their software
products are built on open-source code, according to an annual survey by consulting firm Black
Duck.”). Notably, “[e]ven tech giants are venturing into the open” source software approach. Id.
(noting that Amazon, Google, Cisco, Microsoft, Netflix, and Intel have partnered to develop open-
source software).

2017] A “SOURCE” OF ERROR 227

the federal government moving toward developing federal open-source
software.349

Governments that use open-source software also save money on
litigation.350 Because open-source software contains fewer errors, it is less
likely to form the basis for reversal or protracted litigation than computer code
with significant flaws.351 Further, the transparent nature of open-source
software prevents litigation bottlenecks from occurring. For example, when a
flaw is publicly discovered in a private, proprietary program’s source code,
defendants with cases involved in that program understandably rush to the
courts and attempt to challenge their convictions.352 By bottlenecking and
concentrating litigants into a short period of time, closed-source software
magnifies the strain those litigants place on the judicial system.353 The time
between a defendant’s original trial and the date of discovery of source code
error also magnifies the costs of retrying the case, as witnesses may have
moved, evidence may have degraded or been lost, and new prosecutors must
relearn the facts of the case. In short, retroactively curing programming errors
via simultaneous waves of litigation is less efficient than simply maintaining a
consistent, high-quality program.

The third rejoinder to the resource objection is that the defendant’s rights
outweigh any marginal resource expenditures involved in implementing the
suggested solutions. Though it is likely that policymakers and judges will
actually substantially gain by implementing the suggested solutions, even the
possibility of loss should not deter policymakers. The right to meaningfully test
opposing evidence is not only a fundamental right, but also the core right that
protects the most basic liberty interests of the citizenry.354 As the Supreme
Court has unanimously noted, “[f]ew rights are more fundamental than that of
an accused to present” a complete defense.355 In a world where prosecutors
deploy increasingly sophisticated technologies, the importance of software

 349. See PRESIDENT’S INFO. TECH. ADVISORY COMM., RECOMMENDATIONS OF THE PANEL

ON OPEN SOURCE SOFTWARE FOR HIGH END COMPUTING (Sept. 2000),
https://www.nitrd.gov/pubs/pitac/pres-oss-11sep00.pdf [https://perma.cc/5UNX-83PC]
(recommending federal development of open-source software).
 350. See Buskirk & Liu, supra note 15, at 20 (“[I]n terms of faulty criminal convictions. . . . the
collective value of negative effects [caused by software defects] . . . is far larger than the costs of
research and development required to prevent such negative effects.”).
 351. See Vaughan-Nichols, supra note 323 (noting that open-source software is empirically of
higher quality).
 352. That litigation glut is precisely what happened after the flaws in the DNA analysis
program STRMix were discovered. See Murray, supra note 50.
 353. The concentration of timing is especially difficult for courts to handle, because the number
of defendants who may seek to challenge any given software grows over the time that software is
used, while the cases are otherwise naturally distributed across a longer period of time. In other words,
if every defendant for the past decade challenges a particular technology at the same time, that is
significantly harder to handle than dealing with each defendant discretely over that ten-year period.
 354. See Chambers v. Mississippi, 410 U.S. 284, 302 (1973).
 355. Id.

228 CALIFORNIA LAW REVIEW [Vol. 105:179

testing only increases.356 Put simply, the fundamental principles of justice are
not so weak as to buckle in the face of inconvenience.357

CONCLUSION

It is difficult to overstate the fallibility of computer programs. As this
Note has argued, the reliability of computer programs should be proven rather
than presumed. The only way to test the accuracy, precision, and reliability of a
computer program is to see its marching orders: the source code. Our system of
justice establishes proof through the adversarial testing of evidence. Insulating
source code from review by defendants prevents that adversarial testing. Such
insulation is not only inequitable, but also violates the defendant’s right to
present a complete defense, the right to confrontation, and the statutory right to
reliability under Daubert.

Two centuries ago, Blackstone feared that adversarial testing of evidence
would be undermined by “secret machinations” and arbitrary trial methods.358
In the modern era, Blackstone’s fears have come true in an unexpected way:
actual secret machines threaten the defendant’s right to a fair trial. Before the
Constitution was adopted, defendants could be subject to trial by fire. Today,
defendants are subject to trial by machine. The Constitution compels a better
result.

 356. See, e.g., supra notes 4–8 (offering examples of increasingly sophisticated technologies
deployed by prosecutors).
 357. The long-standing legal maxim fiat justitia ruat caelum (“let justice be done though the
heavens fall”) adequately expresses this sentiment.
 358. 5 WILLIAM BLACKSTONE, COMMENTARIES 255 (1996).

	California Law Review
	2-1-2017

	A “Source” of Error: Computer Code, Criminal Defendants, and the Constitution
	Christian Chessman
	Recommended Citation
	Link to publisher version (DOI)

	Microsoft Word - Chessman 38 FINAL

