September 1985

Policy Issues for Consideration in Transferring Technology to Developing Countries

Nicholas A. Ashford
Christine Ayers

Follow this and additional works at: http://scholarship.law.berkeley.edu/elq

Recommended Citation
Nicholas A. Ashford & Christine Ayers, Policy Issues for Consideration in Transferring Technology to Developing Countries, 12 ECOLOGY L. Q. 871 (1985).
Available at: http://scholarship.law.berkeley.edu/elq/vol12/iss4/6

Link to publisher version (DOI)
http://dx.doi.org/https://doi.org/10.15779/Z38MF9W

This Article is brought to you for free and open access by the Law Journals and Related Materials at Berkeley Law Scholarship Repository. It has been accepted for inclusion in Ecology Law Quarterly by an authorized administrator of Berkeley Law Scholarship Repository. For more information, please contact jcer@law.berkeley.edu.
Policy Issues for Consideration in Transferring Technology to Developing Countries

Nicholas A. Ashford*
Christine Ayers**

In 1969, Union Carbide built a small pesticide plant outside of Bhopal, India.1 The plant was located in a deserted area outside the city limits, but by the time the plant was expanded six years later, large numbers of squatters had settled near the facility. The squatters were attracted by employment opportunities and the new roads and water lines that had accompanied the plant.2

Union Carbide uses methyl isocyanate, an extremely potent tear gas, to produce relatively toxic pesticides.3 At the Bhopal plant, the methyl isocyanate was stored in refrigerated underground tanks to keep the volatile gas in a liquid form. In November 1984, the Bhopal plant was temporarily closed for maintenance repairs on the storage tanks, connecting pipes, and a scrubber (a safety device designed to neutralize any escaping gas).4

On the night of December 3, 1984, the temperature in one of the storage tanks began to rise, causing the pressure in the tank to increase. A safety system, designed to relieve excessive pressure in the tank automatically, failed to operate. Workers were unable to manually operate mechanisms to relieve the pressure in the tank, and many of the workers fled from the facility. A critical control panel failed and prevented the leak from appearing on monitors that could have provided an earlier warning. Two safety devices also failed: the scrubber, which should have neutralized

Copyright © 1985 by ECOLOGY LAW QUARTERLY

* Associate Professor of Technology and Policy, Center for Technology, Policy and Industrial Development, Massachusetts Institute of Technology; J.D. 1972, University of Chicago; Ph.D. 1965, University of Chicago; B.A. 1959, Washington University.

** Research Associate and Staff Attorney, Center for Technology, Policy and Industrial Development, Massachusetts Institute of Technology; J.D. 1984, Northeastern University; M.A. 1973, Northeastern University; B.A. 1971, Purdue University.

4. Broder, supra note 1, at 1; Lueck, supra note 2, at A11; Chandler, supra note 3, at 10; Slavin, Poison Gas Kills 395 in India, Boston Globe, Dec. 5, 1984, at 1, col. 1.
the escaping gas, and another mechanism, which should have ignited the gas and burned it off harmlessly in the outside air. Within an hour the tank was finally sealed by the plant manager aided by engineers sent in by local authorities. Within that hour, though, the damage had been done. Much of the gas had escaped and spread in a thick cloud over Bhopal.5

The Bhopal plant had one manual alarm system (in contrast to a computerized four-stage alarm system used at a sister plant in Institute, West Virginia),6 which was sounded, but few surviving residents recalled hearing it. Many of those who did hear the alarm did not understand what it meant, and, in fact, many people ran toward the plant thinking it was a fire alarm.7 Within hours, hundreds of residents were dead or dying. By the end of the week, an estimated 2500 people had died as a result of the gas leak, and thousands more were critically ill. Medical authorities remain concerned about the long-term effects of exposure to isocyanate, including blindness, liver and kidney damage, mental retardation, and severe respiratory ailments.8

Prior to the tragedy at Bhopal, some officials in the Indian government had questioned the propriety of permitting factories to produce and store chemicals in the midst of densely populated areas. In July of 1984, India’s Department of the Environment proposed stringent guidelines banning plants that produced hazardous chemicals from locating within fifteen miles of the outer limits of any city. As of December 1984, the guidelines had not been approved by other government departments or the Indian Cabinet, primarily because local governments which wanted to encourage industrial growth opposed the proposed safety restrictions. Even if India had adopted the proposed law, it may not have applied to plants already built, and the tragedy at Bhopal might still have occurred.9

INTRODUCTION

The tragedy at the Union Carbide plant in Bhopal, India was not an isolated industrial accident. Major disasters involving hazardous materials have recently been occurring with alarming frequency throughout the world. Two weeks before the accident in Bhopal, 80,000 barrels of liquid natural gas exploded at a depot of Petroleos Mexicanos, the Mexican oil company, outside Mexico City, killing at least 400 people, injur-
ing over 4200, and destroying over 300 homes.10 In February 1984, gasoline leaking from a pipeline exploded in Cubatao, Brazil, killing more than 500 people.11 In 1979, 1200 head of livestock in Egypt were poisoned by the pesticide leptophos.12 In 1972, hundreds of Iraqis died after ingesting unlabeled, mercury-treated grain imported from the United States.13 These examples are only a few of the many documented disasters that have resulted from the transfer of technology to developing countries.14

The disaster in Bhopal illustrates many of the problems and issues involved in transferring technology to developing countries. Developing nations are generally eager to modernize by industrializing and by adopting agricultural technologies. Special favors in the form of tax breaks or concessions on utility costs may be granted to companies from developed nations to encourage them to establish plants in developing countries. Local opposition to the establishment of new plants may be stifled by government authorities intent on advancing industrial development.15

Additional problems arise once a new plant is established in a developing country. Many developing countries do not have stringent health and environmental regulations, and new plants may not have the latest safety features found on sister plants in developed countries.16 Workers

10 Major Accidents Involving Hazardous Materials, HAZARDOUS MATERIALS INTELLIGENCE REP., Jan. 11, 1985, at 5 [hereinafter cited as Major Accidents].
11 Id.
12 PILLS, PESTICIDES AND PROFITS 15 (R. Norris ed. 1982); Dowie, Hazardous Exports Unsafe at Any Price, 2 DEVELOPMENT, SEEDS OF CHANGE, VILLAGE THROUGH GLOBAL ORDER 65, 65 (1983).
13 Dowie, supra note 12, at 65.
14 For documentation of other disasters resulting from technology transfer, see, e.g., PILLS, PESTICIDES AND PROFITS, supra note 12; Major Accidents, supra note 10, at 4; Dowie, supra note 12, at 65; Ahmed & Scherr, Do Unto Others, AMICUS J., Spring 1981, at 34.
15 For a comprehensive discussion of the problems and issues involved in the export of hazardous industries to developing countries, see Leonard, Confronting Industrial Pollution in Rapidly Industrializing Countries: Myths, Pitfalls and Opportunities in this issue of the ECOLOGY LAW QUARTERLY [hereinafter cited as Leonard, Confronting Industrial Pollution].
16 Some commentators suggest that multinational corporations establish plants abroad to escape stringent health and environmental regulations at home. See, e.g., Castleman, The Export of Hazardous Factories to Developing Nations, 9 INT'L J. HEALTH SERVICES 569 (1979). Other commentators conclude that differences in health and environmental regulation have not resulted in a large-scale flight of industries to developing countries. See J. LEONARD, ARE ENVIRONMENTAL REGULATIONS DIVIDING U.S. INDUSTRY OVERSEAS? (1984) [hereinafter cited as ENVIRONMENTAL REGULATIONS]; Leonard, Confronting Industrial Pollution, supra note 15. Tolerance of lower safety in developing countries may occur for several reasons. Some countries may accept plants with less stringent safety features to encourage development, and some industries in developed countries, finding it financially difficult to comply with regulations at home, may take advantage of the less costly regulations abroad by relocating. Less stringent safety features may also be tolerated when the plant is a joint venture between a multinational corporation and the government or a local company in the developing country. The partner in the developing country may desire to minimize costs by accepting less stringent safety features. Even when companies located in developing countries want to duplicate the level of safety found in sister plants at home, they may encounter difficulties in doing
ECOLOGY LAW QUARTERLY

may lack the skills necessary to run a facility safely. In addition, workers and the population in surrounding communities may not be educated about the dangers inherent in certain industrial processes and products; therefore, in the event of an emergency, alarms may go unheeded, such as occurred in Bhopal. Typically, the population immediately surrounding the plant is very poor and lacks modern communication devices, such as telephones and radios, which are necessary for efficient evacuation.

When twentieth-century technology is introduced into a country that is not fully prepared to receive it, the problems that arise are myriad and complex. The technology transferred to developing countries can assume various forms: products, devices, agricultural practices, industrial processes or plants, and knowledge. Adoption of each form of technology involves unique problems, some of which may hold far-reaching consequences for the developing country's population and environment. Also, some forms of technology will have a greater impact on economic growth in developing countries than will others. Therefore, when developing countries formulate policy concerning the transfer of technology, they should define at the outset what goals they want to accomplish, distinguish between the various forms of technology, and identify the long-term and short-term effects that each form of technology will have on growth and the environment. Developing countries should not view economic growth and the protection of health, safety, and environment as competing goals; instead, they should develop a rational decisionmaking approach that assesses economic benefits without obscuring the impact of technology on public health, safety, and the environment.

No one actor is singly responsible for the problems involved in the transfer of technology. All of the actors—developed nations, multinational corporations, developing nations, and the international community—share responsibility for the safe transfer of technology in a way that ensures the protection of humanitarian and environmental values. Each of these actors is currently responding in different ways to the problems inherent in technology transfer. Unless they cooperate in developing a responsible, coordinated approach to the transfer of technology, their efforts will result only in short-term, piecemeal solutions to specific situations.

With these considerations in mind, this Article identifies the key policy issues in the collection of activities known as "technology transfer." This Article first discusses important considerations underlying the selection of the technology being transferred. Second, it discusses limitations on, and issues raised by, the application of the classic cost-benefit

so; for example, critical parts necessary to advanced safety systems may not be readily available in the developing country in the event of an emergency.

17. Stevens, supra, note 5, at 10.
calculus to the selection of technology being transferred, and it considers some alternative decisionmaking tools. Finally, specific policy issues facing donor countries, recipient countries, and the international community are identified.

I
THE CHOICE OF TECHNOLOGY AND THE COST-BENEFIT QUESTION

A. The Choice of Technology

Technology transfer can take the form of exported products, industrial processes, plants, or skills needed to apply technical ideas. Distinctions between the forms of technology transfer are important for purposes of policy development. One distinction involves the difference between the transfer of products or industrial plants and the transfer of "know-how," i.e. the skills needed to apply technical ideas to national problems. The transfer of know-how has the greatest implications for growth. The developed countries have always been willing to sell products and devices, but reluctant to create the intellectual basis necessary for growth and self-reliance. This know-how is crucial, not only for creating self-reliance of the recipient country, but it is equally important for enhancing adaptability and the capacity to innovate in response to rapidly changing social and political conditions.

Another distinction involves the difference between importing products, such as drugs, pesticides, and appliances, and importing industry per se. Where products are imported, planners may be better able to focus on problems of ecosystem integrity and consumer safety. Once potentially hazardous products are identified, it is easier to control the problems that they present. In contrast, the impact of industries is much less easy to define. When they locate in developing countries, they become an integral part of foreign investment; they create jobs and an infrastructure. Their products also affect worker, consumer, and citizen health, as well as ecosystem integrity, but their activities are less easily monitored and perhaps more difficult to change once entrenched in the developing country. A country can stop importing a particular pesticide in a matter of months or weeks, but it is much more difficult to relocate a plant after jobs are created and an industrial environment has grown up around it. Regulatory efforts have often focused on products and devices, but directed very little attention to foreign investment and the importation of industries, the more serious problem in developing countries.19

A final distinction among the types of technology relates to technology assessment. Technology should be evaluated in at least two ways: 1)
efficacy and utility, and 2) consequences for health, safety, and the environment. Concern with the former, i.e. use of the product or need for the industry, has been the primary driving force behind strategies for adopting technology in developing countries.20 The occurrence of tragic accidents such as chemical explosions, spills, and poisonings fosters a perception that industrial accidents are an inevitable consequence of economic development. The conventional wisdom is that a Hobson's choice must be made between the goals of occupational health and wages or between environmental integrity and a healthy economic base. The resolution of this alleged conflict is fashionably termed a cost(risk)-benefit trade-off. Economic growth and environmental concerns are not, however, mutually exclusive goals. In developed countries, regulation of health, safety, and the environment has stimulated technological innovation and generated a whole host of new products.21

In assessing technology, great care must be taken to distinguish long-term effects on growth and the environment from short-term or transitory effects. In formulating policy, it is important to distinguish those strategies that attempt only to avoid tragic accidents, such as the disaster in Bhopal or mercury-treated seed consumption in Iraq, from those strategies which are aimed at bringing about systemic change. Of course, both are important, but they require very different institutional responses over very different time horizons.

B. Cost-Benefit Calculus

Adopting technology involves assessing both costs and benefits. On the benefit side, adopting a particular technology may result in an expanded Gross National Product and an increase in the rate of economic growth. On the cost side, there may be adverse effects on public health and environmental quality. Cost-benefit analysis can be a useful tool for explicating information about public policies that can be used by public sector decisionmakers, but it should not be applied as an indiscriminate, decisionmaking rule. Decisions such as whether a developing country should adopt a specific technological solution cannot be made simply on the basis of whether benefits exceed costs. Cost-benefit analysis suffers from important methodological flaws, and the results are subject to political misuse. These limitations make cost-benefit calculus an inappropriate decisionmaking rule for policy formulation regarding the choice of technology.22

22. For a review of the state of the art in estimating the effects of technology on health, safety, and the environment, see Staff of Senate Comm. on Governmental Affairs,
Cost-benefit analysis is based in economic theory, and is derived from simple profit and loss accounting methods traditionally employed by business. This method of analysis has also become a widely accepted method of structuring regulatory decisionmaking to establish societal goals and the means for achieving those goals. As such, cost-benefit analysis attempts to organize and evaluate information on the consequences of particular courses of action and to predict possible trade-off opportunities. Although this form of analysis arguably promotes rational decisionmaking, its application to public policy formulation, which involves delicate moral, ethical, and social issues, suffers from inherent limitations.23

As noted above, choosing a technology for adoption in a developing country involves economic considerations and consideration of the effects on public health, safety, and the environment. There are important differences between economic regulation and environmental, health, and safety regulation; in the latter, costs and benefits are especially incommensurable. Economic regulation seeks to improve the workings of the market by encouraging competition, economic efficiency, and the diversity of available goods and services. On the other hand, health, safety, and environmental regulations attempt to ameliorate the adverse consequences of market activities, and technology in general, by reducing the attendant social costs. Environmental regulation is not an instrument of economic policy; it is an instrument of social policy concerned with the consequences and effects of industrial activity. Therefore, environmental regulation cannot be judged by economic criteria alone.24

Another limitation on applying cost-benefit analysis to the choice of technology is the great difficulty in adequately identifying all of the costs and benefits of proposed actions. Forecasting techniques are inadequate to identify many significant consequences of proposed actions—primary consequences as well as secondary and tertiary ones. This is particularly true if the proposed action involves diffuse health and environmental consequences. For example, it is virtually impossible to identify all of the specific economic and social costs of various options for not controlling toxic substances, particularly those with carcinogenic effects, because many significant effects may as yet be unknown. Likewise, there are currently no acceptable methods for measuring the scope of many environmental effects, such as alterations in ecosystems.25 Even where the

23. Ashford, supra note 22, at 129; Baram, supra note 22, at 477.
24. For an elaboration of this point, see Ashford, supra note 22, at 130.
25. See e.g., BENEFITS REPORT, supra note 22, at 11-13, 30, 32, 33, 38, 41-43. See also

possible types of costs and benefits are identified, there may be reasons for not quantifying or articulating them: measurement may be complex or costly, causal connections may be tenuous, or the decisionmaker may decide that it is in his or her best interest to exclude the information for self-serving reasons.26

Even if the costs and benefits of adopting a new technology are adequately identified and included in the calculus, many attributes will still defy traditional economic valuation. One commentator notes: "Cost-benefit analysis works best when (1) a socially accepted method, such as market pricing, is available to measure the costs and benefits, and (2) the measurement can be expressed in dollars or some other commensurable unit."27

Many of the adverse effects of a technology on public health, safety, and environmental quality defy economic evaluation. How does one place a value on human life? Some federal agencies in the United States do assign monetary values to human life.28 This raises certain questions: What is the proper method of valuation? What is the substantive basis for valuation? When assigning value to human life, should agencies open the determination to outside participation in the valuation process? The most fundamental question is whether the cost-benefit analysis is appropriate at all where the risk to human life is involved. The state of the art in estimating the number of cancers, cases of chronic disease, or even injuries caused, is in its infancy. Many health professionals believe, based upon the accepted view of the mechanisms of cancer causation, that there are no "safe" levels of exposure to carcinogens.29

\begin{flushright}
26 Baram, supra note 22, at 131; Barum, supra note 22, at 482.
27 Id.
29 Environmental Causes of Cancer: Hearings Before the Subcomm. on Oversight and Investigations of the House Comm. on Interstate and Foreign Commerce, 94th Cong., 2d Sess. 191 (1976) (statement of Dr. Irving J. Selikoff, Prof. of Medicine, Mt. Sinai School of Medicine); The Costs and Effects of Chronic Exposure to Low-Level Pollutants in the Environment: Hearings Before the Subcomm. on the Environment and Atmosphere of the House Comm. on Science and Technology, 94th Cong., 1st Sess. 362 (1975) (statement of Dr. David P. Rall, Director, National Institute of Environmental Health Sciences); Hattis, Ashford & Hol-
for exposure to chronic toxins that are not carcinogens often are derived
from either acute human exposures or high-dose animal experiments.
The interpolation techniques used to translate such data into doses ac-
ceptable for chronic human exposure are imperfect. Therefore, risk cal-
culations for a particular maximum exposure level are often not very
meaningful. Thus, it is difficult to assess the benefits to health, safety,
and the environment of not adopting or failing to regulate the introd-
uction of a particular technology.

Although it is most appropriate to apply cost-benefit analysis when
assessing the economic benefits of introducing a particular technology,
even that application may have problems. Even though economic costs
and benefits can be easily monetized, such estimates will not necessarily
be reliable. Decisionmakers, in both developed and developing countries,
often lack access to information concerning alternative products,
processes, and resultant costs and benefits, that would enable them to
derive the best estimates; therefore, they depend to a large extent on in-
dustry data which often biases the assessment in favor of industry. In
addition, when the transferred technology is to be regulated by the devel-
oping country, estimates of the economic costs and benefits of introd-
ucing that technology often fail to take three crucial issues into account: 1)
economies of scale which inevitably arise from the demand-induced in-
crease in the production of compliance technology; 2) the ability of a
regulated industrial segment to learn over time to comply more effi-
ciently—what the management scientists call the learning curve; and 3)
the crucial role played by technological innovation, which yields benefits
to both the regulated firm and the public. Estimates of compliance costs
should not be based on static assumptions about the firm and its
technology.

Another valuation problem inherent in cost-benefit analysis is the
limited usefulness of a discount rate for valuing future costs and benefits.
A discount rate is applied to establish a present value for the future ef-
teffects of introducing a particular technology. Use of the discount rate in
the environmental context is fraught with problems. For example, when
the discount rate is used to predict the value of unquantifiable attributes
such as future environmental degradation or mutagenic effects on future
generations, the results are often arbitrary and inconsistent. These val-
uations may or may not be socially acceptable, but an important question
to ask is whether they are ensuring a desirable quality of life and health
for future generations. The manner in which the discounting problem is handled can significantly alter the comparison of costs and benefits and render the use of a benefit-to-cost ratio as a decision rule highly suspect. The lack of consensus on what the rate should be means that a policymaker's preferences for a particular regulatory option can, improperly, be hidden in the choice of a discount rate.

Even assuming that the costs and benefits of adopting a new technology can be adequately identified and valued, a serious limitation on simple comparisons of costs and benefits is that such calculations ignore the equity consequences of policy decisions—costs and benefits are often borne by different groups of people and firms, and in many cases, by different generations. For example, the decision to establish a pesticide plant in a developing country may result in economic benefits to the corporate owner, corporate shareholders, employees, local farmers, and consumers. The decision may also result in adverse health effects to plant employees, people living near the plant, farmers who handle the pesticide, and consumers who eat contaminated food. In addition, future generations may suffer the depletion or pollution of natural resources and adverse health effects. Where there are no clearly defined public policy directives, decisionmakers will make personal assumptions about the distribution of costs and benefits. The aggregation of costs and benefits without consideration of equity is a value-laden decision itself, i.e. it is a decision to ignore equity.

Another inherent limitation on a simple comparison of costs and benefits is that such an analysis fails to provide alternative scenarios against which the result can be compared. Unless information about alternative scenarios is available on both sides of the equation, an adequate evaluation of the advantages and disadvantages of a particular technology cannot be undertaken. Of course, an additional difficulty is that the evaluator can select alternative scenarios with the intent of making the actual decision look better or worse.

A related limitation on simple cost-benefit comparisons is the failure of the method to differentiate between long-term calculus and short-term calculus. Differentiating between the two requires that the problems to be solved be clearly defined at the outset. Long-term calculus, which involves making systemic changes, requires long-term planning. The initial costs of such an approach may be greater, but the goal is to foster greater benefits for public health, safety, and the environment in the future. Long-term calculus also places a premium on acquiring reliable, comprehensive technical and economic data, and it takes into account

34. Id.
35. Ashford, supra note 22, at 135; Baram, supra note 22, at 486.
36. Ashford, supra note 22, at 135.
"technology-forcing" in its regulatory assumptions. On the other hand, short-term calculus is remedial in focus; it attempts to "fix" problems that have already occurred. Short-term calculus is particularly prone to being distorted by the decisionmaker's politics.

Adopting new technology requires long-term planning, otherwise, a country or a system may be committed to a legacy of irreversible damage. The United States is an example of a developed country that has inherited the risk side of the long-term calculus. Early water and air pollution control efforts were designed as short-term fixes. Solid and hazardous wastes were placed in so-called sanitary landfills. Today, a substantial percentage of the drinking water from urban area sources is no longer potable because of contamination from waste dump leachate.

Cost-benefit analysis appears to be a neutral analytical technique, yet as the foregoing discussion illustrates the comparison of costs and benefits is beset by serious methodological difficulties and requires the analyst to make numerous value-laden assumptions. In choosing a technology, a socially acceptable balance must be struck between utility and economic benefits, and the adverse consequences for public health, safety, and the environment. The valuation imposed on the degree of acceptable risk to life, health, and the environment, the rate at which to discount future effects of a proposed action, and the distribution of costs and benefits all involve moral and ethical considerations. As such, those considerations must be decided by society as a whole through the political process, not by market methods of analysis that are incompatible with social decisionmaking.

Additionally, despite its neutral framework, cost-benefit analysis can be used to promote self-interests rather than to analyze options objectively. A policymaker has numerous opportunities to manipulate the outcome by selectively identifying costs and benefits, assigning arbitrary values to identified costs and benefits, using self-serving assumptions about distributional equity, manipulating the discount rate, and by selectively comparing the result of the analysis to alternative scenarios. Given the ease with which the method can be manipulated, it would certainly be undesirable, if not dangerous, to allow any one group of people—whether scientists, economists, industry representatives, or national lead-

38. Whipple & Hunter, Nonpoint Sources and Planning for Water Pollution Control, 49 J. WATER POLL'N CONTROL FED'N 15 (1977) (the authors cite two reports showing that nonpoint source pollution in urban areas is as much of a problem as point source water pollution); see also Focusing on Nonpoint Sources, 48 J. WATER POLL'N CONTROL FED'N 3 (1976).
ers—set priorities that are given the mantle of respectability by cost-benefit analysis.

C. Trade-Off Analysis

The discussion thus far has focused on the inherent limitations in using cost-benefit analysis as a rule for choosing technology. There is a more rational approach to decisionmaking where environmental, health, and safety considerations are concerned. Decisionmakers should instead use a "trade-off" analysis which does not obscure the differences between factors such as health, environment, and economic costs; this method also does not obscure the identification of those who benefit and those who suffer as a result of adopting a particular technology. 39

The trade-off analysis that one must use in order to perform rational environmental decisionmaking is not hopelessly complicated when applied to real world problems. The difficulties do not lie principally in estimating and quantifying costs and benefits, but rather in meeting legislative mandates and remaining politically accountable. Figure 1 is a trade-off matrix that attempts to clarify the differences between the environmental, health, safety, and economic effects of environmental and safety regulations and the relationships between actors. For each actor, this matrix illustrates the consequences of a particular decision, such as regulating a particular technology. 40

FIGURE 1

Cross Impact Matrix of Environmental/Safety Regulation

<table>
<thead>
<tr>
<th>Group</th>
<th>Economic</th>
<th>Health/Safety</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producers</td>
<td>Cₙ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workers</td>
<td>Cₙ</td>
<td>Bₕₛ•</td>
<td></td>
</tr>
<tr>
<td>Consumers</td>
<td>Cₙ</td>
<td>Bₕₛ• - Bₑfficacy••</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Cₙ</td>
<td>Bₕₛ•</td>
<td>Bₑninvironm</td>
</tr>
</tbody>
</table>

* Bₘₐₛ refers to benefits of reducing hazards which impair health or safety.
** Bₑfficacy refers to the intended benefits to health from use of chemicals such as drug or food preservatives.

39. This discussion is taken in part from Ashford, The Role of Risk Assessment and Cost-Benefit Analysis in Decisions Concerning Safety and the Environment, in FDA Symposium on Risk/Benefit Decisions and the Public Health (HEW-FDA #80-1069) 159, 164-68 (1980).

40. The actors are divided into four groups: producers, workers, consumers, and "others." The last group is distinguished from workers and consumers because they are usually in neither a contractual nor an employment relationship with producers (as are workers) nor in a commercial relationship with producers (as are consumers). Workers, consumers, and the others also have no relationship with each other, either contractual or commercial.
Net costs, C_s, include items which have accepted uncontroversial dollar values such as profits, wages, prices, and taxes. Health/safety benefits, $B_{H/S}$, include items which can be quantified, but which are difficult to compare such as incidence of disease, changes in longevity, morbidity, and probability of harm. One special health benefit, the benefit of improved health or safety associated with a drug or chemical, B_{EFFACY}, is separated in the analysis because, for example, in food and drug regulation a trade-off may have to be made between an increase in safe drugs and the availability of efficacious drugs. Environmental benefits, $B_{ENVIRONMENT}$, include non-monetizable items, such as the benefit of preserving a species or the recreational value of fishing. The monetizable environmental costs, such as those reflected in loss of property value, are included in the net costs, C_s. With these preliminary definitions in mind, the major consequences of the predominant regulatory categories will be considered in light of several relevant regulatory statutes in the United States.

1. Occupational Health and Safety Regulation

The following major consequences emerge as the result of occupational health and safety regulations:

![Diagram of trade-offs]

Producers, workers, and consumers may share increased costs of disease and accident prevention, while workers gain health benefits. The major trade-off is between economic costs to producers and consumers, and health benefits to workers. Some economists argue that workers can themselves trade off their wages for their health through the employment contract. A free market solution is socially unacceptable, however, because of the existence of involuntary risk assumption, the difficulties

41. See infra text accompanying note 45.
42. In each diagram that follows, the major effects of a regulation are indicated by boxes. The major trade-offs that should be considered are indicated by lines between the major effects.
workers have in understanding long-term, low-probability risk, and their
tendency to underestimate such risks. This is particularly true in develop-
ing countries where the working class population is particularly poor
and uneducated. Workers' compensation provides little post hoc adjust-
ment. In the United States, the Occupational Safety and Health Admin-
istration (OSHA) is obligated under the Occupational Safety and Health
Act to set standards which protect workers “to the extent feasible,” lim-
ited principally by technological feasibility. OSHA is the referee be-
tween workers and producers and consumers, and makes the decisions
about trading off risks.

2. Consumer Product Safety Regulation

For consumer product safety regulations the following consequences
emerge:

Producers \(C_s \)

Workers \(C_s \)

Consumers \(C_s + B_{H/S} \)

versus

Here too producers, workers, and consumers may share increased
costs of accident and disease prevention. The consumer is the health
beneficiary. The major trade-off is between economic costs to the pro-
ducer and economic costs and health benefits to the consumer. While
caveat emptor is no longer the operating principle in the United States,
the Consumer Product Safety Commission (CPSC) protects consumers
from “unreasonable risk” which the agency discerns after considering the
economic value of the product to the consumer. The agency attempts
to act in the interest of the consumer; it does not perform cost-benefit
analysis for the society. The CPSC is less protective than is OSHA be-
because: 1) consumers may be in a better economic position to value their
own safety; 2) their assumption of risk (in purchasing products) is more
voluntary than that of workers (in the case of obvious hazards); and 3)
substantially greater incentives exist for improving product safety
through the threat of products liability suits. In contrast, workers’ com-

tion on the Identification and Regulation of Potential Occupational Carcinogens, 29 C.F.R.

Compensation has severely limited the right of most workers to sue their employers. Additionally, a worker's assessment of risk on the job is often colored by pressures that are absent when he or she, as a consumer, is evaluating product safety.

3. Food and Drug Regulation

The major consequences of food and drug regulation are as follows:

While producers, workers, and consumers may share the costs of drug and food regulation, the costs of regulation are mainly borne by consumers. Unlike other consumer products, close substitutes not subject to equivalent regulation seldom exist, thus producers pass most costs on to consumers. Drugs are often taken on the recommendation of a physician, and foods with additives are ubiquitous and difficult to avoid. Hence, the purchases of these goods are not "voluntary" in the same sense as are the purchases of other consumer products. With drugs, the main trade-off is whether regulations that make efficacious drugs safer are worth the alleged diminution or delay in their availability. In the United States, the Food and Drug Administration (FDA) makes this difficult judgment on a case-by-case basis. For food preservatives, the trade-off is between preventing spoilage and excluding chemical toxins or carcinogens from food. The FDA acts more protectively with regard to carcinogens than towards other chemical toxins. In the case of both food and drug regulation, the FDA attempts to act in the consumer's interest, not unlike the mandate of the CPSC.

46. See id. at § 348(c)(3)(A) (the Delaney amendment to the Food, Drug and Cosmetic Act states that no food additive "shall be deemed to be safe if it is found to induce cancer when ingested by man or animal, or if it is found, after tests which are appropriate for the evaluation of the safety of food additives, to induce cancer in man or animal.")
4. Air and Water Pollution Regulation

The major consequences of air and water regulation are:

Producers

Workers

Consumers

Others

versus

versus

Producers, workers, and consumers may share the costs of pollution abatement. In the case of utilities and mobile sources, most of the costs may be passed on to consumers because demand is relatively inelastic. For other industrial polluters, the beneficiaries of this regulation are people not tied in a meaningful way, contractually or commercially, to the producer. This is a classic externality and collective goods problem where society is assuming health risks unknowingly and involuntarily. The major trade-off is represented in the question: How much pollution abatement is society willing to pay for? In the United States, the answers implemented by the Environmental Protection Agency (EPA) vary according to the type of hazard, the availability of technology, the regional economic impact, and whether or not the pollution is from stationary or mobile sources.47

5. Regulation of Toxic Substances

Regulation of toxic substances represents the most far-reaching trade-off problem. Regulation is likely to provide substantial health ben-

efits to workers, consumers, and others while imposing costs primarily on producers and consumers.

![Diagram showing trade-offs between producers, workers, consumers, others, and the environment.]

In the United States, the Toxic Substances Control Act mandates that EPA protect against "unreasonable risk of injury to health or the environment" while avoiding "unnecessary economic barriers to technological innovation." The statute places primary emphasis on health and safety and grants EPA strong and diverse regulatory authority.

D. The Implications of Trade-Off Analysis

What emerges from this brief examination of the trade-off analysis of federal environmental and safety regulations in the United States is that a rational "trade-off" approach to evaluating the benefits and costs of various technological regulations does, in fact, exist. The trade-off analysis evidences a concern for equity to workers, consumers, and society, and the desire to minimize the social risk of not regulating a particular activity. One specific example of the proper use of trade-off analysis is evident in asbestos regulation. If asbestos is banned from use as a brake lining, more lives might be lost on the highway (due to less braking effectiveness) than are saved in asbestos manufacturing operations. The asbestos workers are, however, a non-voluntary, selected group exposed to harm that others in society are not forced to incur. Community ties, family relations, and economic situations may restrict the workers' job mobility for generations and prevent them from leaving the group. Further, if asbestos workers are already a disadvantaged group in society, additional equity considerations arise. In short, equity may require that

49. Id. § 2601(b)(3).
50. Id. § 2601
society accept diminished braking effectiveness in return for a decreased burden on asbestos workers. This example demonstrates that trade-off analysis invites policymakers to consider explicitly important societal values, in addition to economic efficiency.

Trade-off analysis goes beyond traditional cost-benefit analysis, and is therefore a more useful analytical tool. Environmental regulation is, after all, an instrument of social policy, not an instrument of economic policy. Society may not want the market for safety to be merely efficient; it may wish to go much further than a well-functioning market in protecting workers, consumers, and potential victims of toxic substances pollution.

Regulatory decisionmaking must go beyond using a trade-off analysis which includes only short-term cost, benefit, and distributional effects traceable directly to a specific regulation. If a complete rationale is to be developed for regulatory decisionmaking, the indirect benefit of having the private sector control presently unregulated hazards, the long-term changes in the legal environment, effects on technological innovation, and the proper treatment of uncertainty all need to be factored into the decision analysis. What can be shown on the above matrices is only a small part of the picture. Current efforts to improve decisionmaking in the choice of technology might be better focused by ensuring that governments, workers, consumers, and industries—in developed and developing countries—have improved access to information on the nature and extent of health hazards, and better information on the technological capabilities of industries to respond to regulatory controls.

E. Allocating Decisionmaking Responsibility

The final issue to be raised concerning choice of technology is the allocation of responsibility in choosing technology for a developing country. To what extent do developed nations have a right to impose their own calculus on developing nations? Some commentators argue that developed countries are obligated by international morality and environmental self-interest to attempt to prevent developing countries from undertaking uncontrolled, large-scale exploitation of the environment similar to that which accompanied industrialization in developed countries.51 Other commentators reject this approach as too paternalistic and argue that developing countries have a right to establish their own priorities.52

Developing countries do have a right to establish their own priorities, but that right should not be absolute where global health and envi-

51. See, e.g., Strong, International Law and International Morality, 10 LAW SOC'Y GAZETTE 83 (1976).
52. See, e.g., Long, Identifying Environmental Options in Development, 9 DEV. DIG. 34 (1971).
ronmental consequences are concerned. Solving the problems inherent in technology transfer requires the complete cooperation of both actors—developed and developing countries alike. This Article suggests that the developed countries have a substantial responsibility to promote the safe, responsible development and use of particular technologies. Promoting the benefits or utility side of technology is only one-half of the developed country’s role; it is also obligated to minimize the risk side of the equation. This can be accomplished, in part, by transferring knowledge, educating responsible managers, and fostering concern for the health, safety, and environmental consequences of adopting particular technologies.

Developed countries should at least notify developing countries about the risk side of the equation by supplying notice that certain substances or products have been banned or restricted at home.

1. A Uniform Approach

There are dangers inherent in individual nations adopting divergent national policies toward risk. As discussed above, the data for risk are controversial, and the data concerning the usefulness of particular technologies are often unreliable. In addition, when different countries adopt different national policies for acceptable risk they invite continued production of harmful products because sellers know that the products can be sold somewhere. For example, producers will invest in environmentally risky products if the market in some developing country will bear risks unacceptable to the United States market. Thus, a divergent spectrum of risk acceptance in various countries will encourage more environmentally unsound products in all countries. The existence of countries which have a higher risk tolerance may encourage the creation of pollution havens and the export of hazardous industries from developed nations.

Nations should cooperate to establish uniform levels of risk tolerance around the globe. Decisionmakers in a developing country may think that the best method of promoting growth, and improving the quality of life in their nation is to demonstrate a greater tolerance to-

53. Specific means by which developed countries can encourage developing countries to minimize the risk side of the equation are discussed infra text accompanying notes 60 and 83.
54. See infra text accompanying notes 82 and 86. For a more detailed discussion of notification requirements see the Comment by Karen Goldberg in this issue of the *Ecology Law Quarterly*.
55. *Supra* text accompanying notes 29-31.
57. See supra note 16 and accompanying text; but see Leonard, *Confronting Industrial Pollution*, *supra* note 15.
wards high risk products and industries than their neighbors. This is illusory. Building stringent health, safety, and environmental standards into a country's industrial system is most likely to be the best strategy for attaining a high quality of life. A low level of protection will ensure that the quality of life will, only after many decades (if ever), reach the levels that the purchase of technology allegedly offers.

2. Responsibility and Liability

A final note regarding the allocation of responsibility in technology transfer decisionmaking concerns the distinction between responsibility and legal liability. All of the actors—the international community, developed and developing countries, and multinational corporations—share responsibility for ensuring the safe development and use of technology. In the event of a disaster, however, the corporate owners of the industry involved also assume legal liability. Corporations clearly have an incentive, if only to prevent extensive legal liability, to promote technology in a manner that minimizes any adverse consequences to human life and the environment. Corporations in developing countries sometimes possess the leverage to promote concern for the protection of health, safety, and the environment. For legal and moral reasons multinational corporations should assume a high level of responsibility in exercising the influence that they acquire in developing countries. They should use their influence to comply with, rather than avoid, appropriate regulation.

In sum, when selecting technology, developing countries should develop a rational decisionmaking approach that permits them to implement a long-range policy for attaining both economic growth and the protection of public health, safety, and the environment. In addition to the limitations discussed above, a simple cost-benefit analysis is inherently inappropriate as the sole decisionmaking method for choosing technology because it tends to pit economic growth against environmental concerns as though they were mutually exclusive goals.

Although the choice of technology ultimately is made by the developing countries, the other actors involved in technology transfer should encourage and assist developing countries in responsibly selecting technology in a manner that promotes both goals. Section II sets forth policy implications for each group of actors involved in these resource allocation decisions.

59. See generally Leonard, Confronting Industrial Pollution, supra note 15.
II
POLICY IMPLICATIONS FOR THE MAJOR ACTORS

The problems raised by the transfer of technology are global in scope. The governments of exporting and importing countries, in cooperation with the international community as a whole, must accept joint responsibility for the flow of hazardous commerce. No single international organization, government, or corporation has the authority or the means to control the flow of dangerous substances in international trade or the location of industrial plants; therefore, several distinct groups of actors share responsibility for developing an implementable policy for technology transfer. One group is the exporting or donor countries, typically, the developed countries. The second group is the importing or recipient countries, usually developing countries. The third group is the international community, made up of organizations and members of both developed and developing countries. The fourth and most important group of actors are commercial firms that export or import the technology. Certainly, some commercial firms behave responsibly when transferring technology, whether of their own initiative, out of altruism, or from fear of legal and economic consequences of the magnitude now faced by Union Carbide as a result of the Bhopal disaster. Other corporations will be influenced by government regulation and pressure from international and national public opinion.

A. Policy Implications for Donor and Recipient Countries

There are a variety of measures that both donor and recipient countries can adopt to minimize the health, safety, and environmental dangers presented by technology transfer. This section discusses the most important measures that countries can implement.

1. Information Systems

No country can correctly weigh the advantages and disadvantages of a given technology unless it has accurate and complete information on the health, safety, and environmental effects of the technology. At present, few nations have organized systems for the storage and dissemination of such data. Furthermore, there is presently no organized and simple method for sharing this information among nations. If potentially hazardous technologies are to be developed and transferred in a responsible fashion, both donor and recipient countries must establish their own domestic data base systems for the storage of risk data. Each domestic system will be more effective if all are linked and information available to one nation is available to all.60

To develop a comprehensive data base that can be utilized effec-

60. See also Alston, supra note 20, at 454.
tively, donor and recipient countries must overcome a number of obstacles. Currently available data are of poor quality, due largely to the fact that compilation of reliable data is a formidable task, beyond the capability of most nations. Extensive pre-market testing of certain chemicals and products may be required to assess the safety hazards, utility, and acceptability of various products. Many industries presently possess information on the hazards of their particular processes and products, and those responsible for creating a data base might obtain some information directly from industry. Unfortunately, the level of testing and the quality of data vary considerably among manufacturers and classes of substances. Moreover, data from industry sources may not always be sufficiently reliable for direct inclusion in a government data base because manufacturers are often unwilling either to conduct exacting tests or to release information that could threaten their competitive positions. Hazard assessment data must, therefore, be scrutinized by independent sources, such as government laboratories. Yet even this level of verification may not be easy to achieve because some national governments are reluctant to release data that may harm their own domestic industry.

Another difficulty in developing an adequate data base for international use is the reluctance of some governments to rely on foreign data and data evaluation. The international community can overcome this difficulty by establishing a uniform set of standards for testing chemicals and technologies. The Organisation for Economic Co-operation and Development (OECD) has taken steps in this direction by proposing several initiatives aimed at promoting uniformity in data collection and assessment. These initiatives propose the mutual acceptance of chemical

61. Id. at 402.
62. Id.
63. Id.; see also 1 Preclinical and Clinical Testing by the Pharmaceutical Industry: Joint Hearings Before the Subcomm. on Health of the Senate Comm. on Labor and Public Welfare and the Subcomm. on Administrative Practice and Procedure of the Senate Comm. on the Judiciay, 94th Cong., 2d Sess., 572 (1976) (EPA random samples of toxicity tests showed industry conclusions were sometimes based on insufficient information) (hereinafter cited as Preclinical and Clinical Testing Hearings).
64. 2 id. at 134 (statement of John R. Quarles, Deputy Administrator, EPA) (both EPA and FDA expressed concern about the accuracy of test data generated by American industry laboratories); Alston, supra note 20, at 404-05. See also Leonard, Confronting Industrial Pollution, supra note 15.
65. Alston, supra note 20, at 406.
66. Id. at 407; Ragolia, The FDA's Acceptance of Foreign Clinical Data, 30 FOOD DRUG & COSM. L.J. 433, 434 (1975).
67. The OECD was established in 1961. Its members include Australia, Austria, Belgium, Canada, Denmark, Finland, France, the Federal Republican of Germany, Greece, Iceland, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. THE WORLD ALMANAC AND BOOK OF FACTS 1985 564 (H. Lane ed. 1984).
evaluation data through the establishment of guidelines for proper test procedures and laboratory practices. The initiatives also recommend that countries require industries to make available to them minimum data before allowing companies to market new products. This would help ensure that the adverse effects of chemicals can be evaluated before the products are placed on the market.68

A data base system will only be successful if the participants cooperate in collecting and disseminating data. One example of a positive governmental response to industries reluctant to disclose data may be found in the United States. In 1976, the United States Congress passed the Toxic Substances Control Act (TSCA).69 This act requires manufacturers of toxic substances to release certain risk data to the government.70 Prior to either the manufacture of a new chemical substance or a significant new use of a chemical substance already on the market, the manufacturer is required to provide the Environmental Protection Agency (EPA) with test data which will permit EPA to assess adequately the risks of the substance.71 EPA also has discretion under TSCA to require industries to provide test data on their substances already on the market.72 In addition, once EPA makes a threshold finding that a substance may pose an unreasonable risk, is produced in substantial quantities, or leads to significant exposure, the Agency has authority to require that the industry generate data by performing tests to determine the health and environmental effects of that substance.73 TSCA imposes certain record-keeping and reporting requirements as well. Under the Act, the EPA Administrator may require chemical manufacturers, importers, and processors to maintain records and report to EPA known health and environmental effects of substances, and to record and report any significant adverse reactions indicating a substantial risk of injury to human health or to the environment.74

In the United States, "right-to-know" laws also mandate release of certain data by industry. Right-to-know laws direct manufacturers and employers to disclose information regarding toxic substance exposure both to workers and their unions. Government agencies charged with the protection of the public health may also obtain this information.75

68. See infra notes 101-14 and accompanying text.
70. Id. § 2629.
71. Id. § 2604.
72. Id. § 2607(a)(2).
73. Id. §§ 2603(a), 2604(e).
74. Id. §§ 2607(a), 2607(e). For a detailed analysis of TSCA and its policy implications for foreign chemical manufacturers and American international trade policies, see Gabbay, International Ramifications of the Toxic Substances Control Act, 2 HARV. ENVTL. L. REV. 490 (1977).
75. Ashford & Caldart, The "Right to Know": Toxics Information Transfer in the Workplace, 1985 ANN. REV. PUB. HEALTH 1, 3.
The type of disclosures required may include obligations to compile and maintain records of certain workplace events or activities (e.g., regular monitoring of workers for evidence of toxic exposure), to provide access to information held by the manufacturer or employer if requested by a worker, union, or agency, and to automatically disclose information pertaining to toxic substance exposure in the workplace.

Although the United States is attempting to acquire and compile data, historically it has been reluctant to accept foreign chemical evaluations and data to augment its database. The United States justifies this reluctance by asserting its desire to minimize any risk in introducing new chemicals into the American market. Although this view may have been justified at one time in light of discrepancies between American and foreign testing procedures, it is no longer tenable, and today creates an unjustified impediment to establishment of an international data base. Chemical research and development activities in other nations have significantly increased in recent years due in part to large scale investment by United States corporations in overseas research. The total of chemical research and development expenditures by nations in the European Economic Community is now much larger than that of the United States, and the level of research and development by the Japanese pharmaceutical industry is comparable to that in the United States. Partly because of the overseas research investment by United States corporations, the United States Food and Drug Administration has begun to liberalize its policies toward accepting foreign chemical data. This change in position is prudent because, unless the United States makes better use of foreign data, it will needlessly burden its already overburdened regulatory system.

Although the United States does not have a comprehensive system for disseminating information on hazardous exports to recipient countries, some attempts have been made to establish notification schemes under existing laws. At present, seven federal statutes forbid the export of certain banned or significantly restricted substances unless the importing country has been notified of the regulatory status of the substance in the United States. Only after notification occurs is export permitted.

76. Id.
77. Id.
78. Id.
79. Alston, supra note 20, at 407; Gabbay, supra note 74, at 511; Ragolia, supra note 66, at 434.
Recipient countries have a parallel responsibility to ensure that technology is transferred with minimum risk to the health of their citizenry and environment. Each recipient country should develop a data base, corresponding to that developed by donor countries, that assesses the efficacy and health effects of various technologies in light of the national demographics and the unique environment of the recipient country. Furthermore, the data base in the recipient country must be flexible and capable of keeping pace with growth rates in developing countries. Unless the recipient country can create a data base to assimilate and assess incoming information, it cannot properly evaluate the benefits of new technology. Without more sophisticated information systems, the information transferred from donor countries will alert recipient countries only to the most obviously hazardous technologies.

Although the challenges are formidable, it is imperative that national governments and international organizations try to make adequate information systems a reality. Decisionmakers in developing countries must have information that is both current and comprehensive if they are to make intelligent choices regarding their nations' technological future.

2. Provision of Technical Assistance

A second policy that donor countries should adopt to ensure the responsible transfer of technology is a commitment to provide technical assistance to recipient countries for evaluating the usefulness and efficacy of transferred technology. Donor countries should send technical assistance along with information on the capabilities of specific technologies, so that recipient countries can reconcile for themselves the goal of growth with health and environmental concerns. Technical assistance helps accomplish long-term systemic, rather than short-term transitory change.

Presently, the United States does not have a program devoted to providing technical assistance along with the technology it exports. Indeed, even in the United States, a consumer may have difficulty in determining the usefulness or effectiveness of a chemical product. An American farmer, for example, may be pressured by distributors from different pesticide companies, each claiming that only a specific chemical will do the job. Lacking a means of determining which in fact is the most effective pesticide, the farmer may end up using a little of each one. If the American farmer cannot obtain definitive information concerning which pesticides to use, it is highly unlikely that consumers in developing countries will be able to do so.83

Congress presently has one research arm, the Office of Technology

83. PILLS, PESTICIDES AND PROFITS, supra note 12, at 13-36.
Assessment (OTA), that is capable of providing a central focus for technological assessment of usefulness, and health and environmental effects of hazardous products. Congress should initiate systemic change in the way firms do business at home and abroad by requiring OTA to oversee assessment of exported technologies.

3. Export and Import Control

The third policy that donor countries might consider is the direct control of exports. One means of directly controlling exports is to prohibit the export of hazardous substances or products that do not meet domestic standards. Arguably, a developed country has a moral obligation to extend the same protection to foreign nations that it accords its own environment and citizenry, particularly in light of the fact that many developing countries lack the resources and the inclination to extensively evaluate the hazardous products and substances that they import. On the other hand, it may not always be logical to impose such bans on other nations because a domestic ban may reflect unique environmental conditions or distinct domestic considerations in the individual exporting nation. A flexible, case-by-case assessment is the best approach to determining whether the export of a domestically banned product or substance is appropriate.

A less restrictive method of controlling exports directly is to condition the export of a substance on prior notification to the recipient country of the regulatory status of the substance in the donor country. As discussed above, the major environmental statutes in the United States already require such notification. Of course, these schemes permit export of banned or restricted substances merely upon notification, thus, they are effective only as a means of alerting the recipient countries of well-defined problems.

In the United States, Congress and several Administrations have considered the appropriateness of controls on exports of hazardous technologies. Congress passed amendments to the Export Administration Act in October of 1979 authorizing the President to use export controls to further the foreign policy of the United States and to fulfill its international responsibilities. On the basis of the authority granted by the Export Administration Act, President Carter issued Executive Order Number 12,264 on January 15, 1981, proposing a comprehensive approach to hazardous exports. Carter's Order required coordination of the various notification schemes under the existing laws pertaining to hazardous exports, compilation of an annual list of all products banned

84. Alston, supra note 20, at 453.
85. Id.
86. See supra note 82.
or restricted in the United States, and pursuit of international agreements on hazardous exports. The Order also mandated the imposition of export controls over substances considered so hazardous that notification would not provide adequate protection. For such substances, the amendments authorized the Department of Commerce to determine whether to grant an export license. If the foreign government raised no objection and if the export would not cause clear and significant harm to United States foreign policy interests, the State Department could recommend licensing.89

On February 17, 1981, just thirty-four days after Carter issued his Executive Order, President Reagan rescinded it citing a need to cut excessive regulation and to reduce export restrictions to enhance the competitive position of United States exports.90 Instead, President Reagan called for a comprehensive study of United States exports of hazardous substances. He also authorized the Departments of State and Commerce to reassess the statutes regulating hazardous materials (in particular their notification schemes), and to recommend revisions that would be more cost-effective.91 The Reagan Administration report, released in May 1982, made several recommendations. It proposed the elimination of export notice requirements for toxic chemicals and pesticides, and the substitution of an annual compendium of regulatory activities in the United States. The report also proposed the elimination of existing prohibitions on the commercial export of drugs that cannot be lawfully marketed in the United States but can be marketed abroad. Finally, the report called for the exchange of information between countries on regulatory actions and for the provision of assistance to developing countries to help them make better decisions regarding the use of hazardous substances. The press widely criticized the report on the grounds that it would ease restrictions on hazardous exports. To date, the Reagan Administration has not made any proposals for statutory changes based on the review by the State and Commerce Departments.92

Despite the inaction of the Reagan Administration, the United States Congress recently has made some progress on the export issue. In

89. Id.
1985, Congress passed amendments to the Export Administration Act that explicitly recognize that exporting banned or severely restricted products can damage the credibility of the United States as a responsible trading party and pose a risk to American foreign policy. The Amendments grant explicit authority for the President to impose export controls on specified hazardous substances under certain conditions. This authority is merely discretionary; nevertheless, the new amendments represent a concrete step toward the development of a more comprehensive export policy.

Although the Export Administration Act never has been used to control hazardous exports, there is no reason why it could not be. Some officials in the United States government are increasingly sensitive about the reputation of the United States in developing countries. These officials may be in a position to encourage presidential intervention through the Export Administration Act and thereby prevent some kinds of exports. Unfortunately, occasional presidential curtailment of exports will not create systemic change. Moreover, governmental control of exports does not control the nature of United States corporate investment in recipient countries. Foreign investment activity, a key element in responsible technology transfer, is beyond the reach of the Export Administration Act.

For their part, recipient countries must establish a products or technology purchasing control mechanism. They should institute a centralized authority capable of closely scrutinizing chemicals and devices that are brought into their countries. In addition, recipient countries must institute mechanisms to evaluate the effects of foreign investment and the establishment of industrial plants within their borders.

4. Environmental Awareness

A fourth policy that donor countries should adopt is a program to increase environmental awareness at home. The citizens of donor countries will not be concerned with hazardous exports unless they are concerned with the global environment as an important element of their quality of life. The role of the press in encouraging this awareness is particularly important. The relative success of the environmental movement in the United States is due in part to the fact that the American press operates with a high degree of freedom and has considerable access to information held by government agencies responsible for controlling toxic materials.
Recipient countries need to enact legislation that will prevent uncontrolled industrial growth, and in effect limit those developments that adversely effect the environment and consumer and worker health and safety. Public opinion is of paramount importance in legitimizing these goals and in enacting effective control measures. To mobilize public opinion, efforts should be made to sensitize the local press to environmental issues.

Recipient countries must also coordinate their industrial development policy and environmental policy. If the Ministry of Industry does not talk to the Ministries of the Environment, Health, or Labor, a recipient country will have difficulty reconciling economic growth with health and environmental concerns. The institutional cause of conflicting industrial and environmental policies is often the balkanization of those concerns within government, industry, and academia. This problem is not limited to developing countries. Agency conflicts occur within the United States and other developed nations as well. Departments of Commerce, Labor and Environment often are separated and frequently are pitted against one another. Industries separate their toxicology laboratories from production and design departments. Universities separately educate engineers, business managers, lawyers, and public health scientists.

National governments and international organizations can help promote long-term systemic change by taking steps to ensure that environmental issues remain visible. They particularly should focus their efforts toward those groups directly involved in technology transfer.

5. Decisionmaking Structures in Recipient Countries

In addition to coordinating industrial policy with health and environmental policy, recipient countries should create a decisionmaking structure free from technocratic dominance. No one group, neither ecologists nor industry chemists, should dominate decisions about what technology to import and how to import it. Properly trained analysts are required. These decisionmakers could be trained in recipient countries, but it is likely that they would receive better training abroad in developed donor countries. In addition to educating analysts, recipient countries ought to sensitze their engineers, scientists, and development managers (the professionals who truly make technological decisions) to environmental, health, and safety issues.

6. Responsible Foreign Policy

A final policy that donor countries should consider is the establish-
ment of an ecological awareness in their foreign policy that will foster a responsible approach toward the use of toxic materials. International development programs of developed countries could condition assistance for the construction of chemical manufacturing plants in developing countries on adherence to sound environmental policies, and the incorporation of advanced safeguards into the plants at all stages of development, production, and distribution. In the United States, international development projects are administered by the Agency for International Development (AID), which is required to observe the requirements of the National Environmental Policy Act. One requirement of the National Environmental Policy Act is that appropriate agencies prepare environmental impact statements for all “major Federal actions significantly affecting the quality of the human environment.” This requirement could be employed more broadly to increase AID’s sensitivity to the environmental effects of its programs abroad.

B. Policy Implications for the International Community

The current international situation regarding hazardous exports is characterized by disparate national approaches to the evaluation and introduction of toxic substances and divergent national policies toward the degree of risk acceptable in particular technologies. The international community can take a variety of measures to alleviate these differences. They can mobilize public opinion and prod developed and developing countries into recognizing that significant health and safety risks or environmental degradation cannot be tolerated. Secondly, the international community should promote multilateral cooperation in regulating the development, use, and trade of hazardous exports. As previously discussed, this would involve creating an internationally accepted data base and the development of uniform standards for both the evaluation of toxic substances and for the safety of workers who handle them. Various organizations currently are undertaking extensive efforts in the international community to promote these objectives.

1. OECD Initiatives

The Organisation for Economic Co-operation and Development (OECD) has made the greatest strides in promoting international environmental cooperation. The OECD member countries are in a unique position to promote international cooperation in controlling hazardous exports because the twenty largest chemical manufacturing corporations in the non-Communist world are located within their borders. Further-

98. Alston, supra note 20, at 455.
100. Id. § 4332(2).
101. See supra note 67.
more, OECD members use a large percentage of the non-Communist world's total chemical output.\(^{102}\)

From the beginning, the OECD has called for a unified, comprehensive approach to assessing the effects of chemicals on the environment.\(^{103}\) In 1978, the OECD instituted a special Program on the Control of Chemicals under the auspices of its Environment Program. The "Special Chemicals Program" was designed to harmonize the regulatory efforts of OECD members, to prevent the creation of technical barriers to trade, and to avoid duplication of effort and cost in chemical testing among the member nations.\(^{104}\) The Program specifically addressed the need for a consensus on methods and means to assess chemicals, the need to facilitate the international exchange of information (and implications of that exchange of information, e.g., loss of confidentiality), and the need to address economic and international implications of legislation emerging in member nations.\(^{105}\)

The Special Chemicals Program resulted in several significant OECD initiatives on hazardous exports. One is a set of guidelines designed to provide a uniform integrated approach to assessing the risks of chemicals. The guidelines suggest basic pre-market data requirements for assessing health and environmental hazards of a substance, and an intensive testing program when the initial assessment indicates that a substance may jeopardize human health and the environment. To promote accurate data assessment, the guidelines also encourage monitoring at all stages of chemical development, use, and disposal.\(^{106}\) The OECD has also adopted principles of good laboratory practice and guidelines for enforcing them nationally.\(^{107}\) In addition, it has adopted the principle of mutual acceptance of data among countries that adhere to OECD guidelines for testing and principles of good laboratory practice.\(^{108}\) Although disagreement exists over the establishment of a minimum set of pre-marketing data, OECD efforts represent an important step toward adequate international control of chemicals.\(^{109}\)

Another significant OECD initiative is a proposed set of guidelines for an information exchange system between governments.\(^{110}\) The essence of the proposed guidelines is that, when an exporting country has banned or severely restricted the use or handling of chemicals, the country should notify an importing country prior to export. The exact timing

\(^{102}\) Alston, supra note 20, at 423.

\(^{103}\) Id.

\(^{105}\) Id.

\(^{106}\) Id.; Alston supra note 20, at 424.

\(^{107}\) Id.

\(^{108}\) Shaikh & Nichols, supra note 104, at 89.

\(^{109}\) Id.

\(^{110}\) Id.
of the notification, though, is left to the discretion of member countries. Additionally, the scope of the information exchange is left open because the guidelines do not specifically define "severely restricted chemicals." This initiative is significant because it promotes the exchange of information between countries.

Another noteworthy OECD initiative is a proposed code of conduct concerning the export of hazardous chemicals. The OECD has proposed the code as a voluntary form of self-commitment designed to complement the inter-governmental information exchange system. The code proposes that exporting countries impose the same quality standards and requirements on toxic substances manufactured for export as those applied by a manufacturer for comparable domestic products. The code also proposes that parent companies apply the same quality standards and requirements to subsidiaries abroad as they apply to themselves at home.

The OECD efforts have met with some significant success. For example, in cooperation with specialized agencies of the United Nations and the European Economic Community, the OECD successfully has restricted the production and use of polychlorinated biphenyls (PCBs), except for very specific purposes, in all twenty-four of its member nations. Originally passed as a resolution by the OECD Council, the restriction has since been adopted in national legislation in all OECD member nations.

The OECD has taken advantage of its unique international position to foster responsible transfer of technology among nations.

2. United Nations Initiatives

Numerous organizations within the United Nations have also attempted to promote multilateral cooperation in regulating hazardous exports. The International Labor and World Health Organizations, for instance, have sought to compile, assess, and distribute data on hazardous substances. Additionally, over the past five years, the United Nations General Assembly has adopted several significant resolutions, designed to discourage the export of banned or severely restricted substances, and to encourage information exchange systems between member states. On December 18, 1984, two weeks after the Bhopal

111. Id.
113. Id.
114. Alston, supra note 20, at 423.
incident, the U.N. General Assembly passed a resolution requesting that the Secretary-General prepare a consolidated list of products that are banned, severely restricted, or not approved for use in various countries. Although United Nations resolutions are only recommendations and are not binding as a matter of international law, such resolutions demonstrate a recognition that all nations have an obligation toward one another to act responsibly when trading in hazardous exports. The United States was the only country to vote against the resolution.117

In 1972, in response to a call to promote international environmental cooperation, the United Nations Conference on the Human Environment established the United Nations Environment Programme (UNEP).118 UNEP is known best for developing a program, known as the Earthwatch system, which is designed to provide early identification of environmental hazards and to collect and assess environmental data concerning those hazards for use by any government that may need the data. Earthwatch is comprised of the Global Environmental Monitoring System (GEMS), the International Referral Service (IRS), and the International Register of Potentially Toxic Chemicals (IRPTC). The IRPTC promises to be particularly effective in encouraging uniformity in the assessment of toxic substances. The immediate objective of the IRPTC is to facilitate informed decisionmaking by becoming a registry of all existing scientific and regulatory data on the physical and chemical properties of substances, including toxicity.119 If United Nations efforts to compile the register are successful, the IRPTC will represent a major advance in the creation of an internationally accepted data base and uniform standards for evaluating toxic substances. The success of the IRPTC depends in large part on the cooperation of other international organizations, manufacturers, and researchers. Even if it does not become an internationally accepted data base, the IRPTC still may play an important role in disseminating information and in helping to avoid unnecessary duplication of research and data storage for at least a limited range of toxic chemicals.

3. Other International Initiatives

The efforts of the OECD and the United Nations represent only a

117. Long & Hanson, Bhopal Triggers Massive Response from Congress, the Administration, 63 CHEM. & ENG. NEWS 53, 60 (1985).
sample of the efforts currently being undertaken by the international community. Most of the activity relating to the evaluation and control of toxic substances undertaken at the international level has developed within existing international institutions. Efforts at the international level, however, may take other forms as well. Two or more individual countries sometimes reach bilateral or multilateral agreements which lead to scientific meetings, combined research programs, or information exchange agreements. These types of arrangements, though, have generally been specific in scope and focused on short-term problems.\[120\]

CONCLUSION

Ensuring the safe, responsible transfer of technology is a global concern. A re-examination of both industrial and environmental policies is required by donor countries, recipient countries, and the international community. Emphasis must be placed on accomplishing long-term systemic change. Problems must be defined in terms of maximizing economic growth and development while minimizing the adverse effects of technology on health, safety, and the environment. Above all, the actors must realize that these goals are not mutually exclusive.

As discussed above, many of the major actors involved in technology transfer have attempted to ameliorate its adverse consequences. With the increased use of chemicals, many nations, both developed and developing, have placed restrictions on the production, sale, use, and disposal of toxic substances and have regulated consumer goods that may pose health and safety hazards. Various international organizations have also tried to promote multilateral cooperation in the regulation of toxic substances. Although these efforts, national and international, indicate a growing awareness of the problems and dangers inherent in technology transfer, most of those efforts, if undertaken randomly, will result only in short-term solutions. To effectuate long-term, systemic change, a comprehensive, coordinated international effort is required.

To date, regulatory efforts have focused primarily on the control of hazardous substances, products, and devices. These efforts are certainly important to avoid some tragic accidents; however, to effect long-term, systemic change, the focus must shift to regulation of the imported industries themselves.

Decisionmakers in developing countries will be more successful in regulating technology transfer if they use effective tools in evaluating their options. Cost-benefit analysis has too many flaws to be relied upon as the only tool for technological evaluation. It fosters short-term analysis, is subject to political abuse, and does not take account of equity considerations.

\[120\] Id. at 409-10.
Trade-off analysis is an effective alternative. Where this method is employed, decisionmakers are encouraged to identify the particular groups that are affected by their choices, and the relationships between those groups. This methodology goes beyond a mere search for economic efficiency, the hallmark of cost-benefit analysis, and is therefore better suited for social policy planning.

Developing countries also must unite in requiring incoming multinational corporations to establish facilities with safety standards and precautions as stringent as those in more advanced countries. In addition, the focus must be placed on the transfer of knowledge to accompany the exported technology. Developing countries need to acquire the skills to apply technical ideas to national problems and to adapt technology to their unique social and political situations. Only in this way can developing countries become self-reliant and able to effect positive, long-term growth.

The above analysis of the policy practices employed by the actors involved in technology transfer is certainly not exhaustive. The important conclusion of this analysis, though, is that all three groups of actors (donor countries, recipient countries and the international community) must assume responsibility and cooperate with each other to bring about long-term, systemic change. In the absence of cooperation, disparate national policies concerning acceptable risk will encourage the production of harmful substances and products. As long as markets for hazardous exports exist, the production of environmentally unsafe substances and devices will continue in all countries.

The magnitude of the disaster in Bhopal has focused worldwide attention on the dangers inherent in technological development. It is unfortunate that such a large loss of life was required to focus attention on a problem of long standing global concern. The problem does not belong to any one corporation or country. The development of technology without regard to the impact on public health and the environment has far reaching implications for everyone. In the future, all actors must assume a larger part of this burden and exercise a higher degree of responsibility in developing and trading in hazardous substances and industries.