How Dangerous are Youth Sports for the Brain? A Review of the Evidence

Carly Rasmussen  
*University of Minnesota*

Sydney Diekmann  
*University of Minnesota*

Christine Egan  
*University of Minnesota*

Tyler Johnson  
*University of Minnesota*

Francis X. Shen  
*University of Minnesota*

Follow this and additional works at: [https://scholarship.law.berkeley.edu/bjesl](https://scholarship.law.berkeley.edu/bjesl)

Part of the [Entertainment, Arts, and Sports Law Commons](https://scholarship.law.berkeley.edu/bjesl)

**Recommended Citation**


**Link to publisher version (DOI)**

[https://doi.org/10.15779/Z38MS3K20S](https://doi.org/10.15779/Z38MS3K20S)

This Article is brought to you for free and open access by the Law Journals and Related Materials at Berkeley Law Scholarship Repository. It has been accepted for inclusion in Berkeley Journal of Entertainment and Sports Law by an authorized administrator of Berkeley Law Scholarship Repository. For more information, please contact jcera@law.berkeley.edu.
How Dangerous are Youth Sports for the Brain? A Review of the Evidence

Carly Rasmussenα, Sydney Diekmannβ, Christine Eganγ, Tyler Johnsonδ & Francis X. Shenε

ABSTRACT

In this Article, we review over 100 studies to answer the question: How likely is it that a youth athlete will sustain a concussion? On the basis of this review, we argue that both ends of the current concussion debate are problematic. On one hand, the data clearly suggest that the vast majority of youth athletes will not sustain a concussion. Moreover, a significant proportion of those who do experience a concussion will see their post-concussion symptoms dissipate within three weeks. On the other hand, the data also clearly shows that there are serious, non-zero risks of brain injury from playing contact sports before and during high school. These risks are elevated in collision sports, and current data collection methods likely underestimate actual incidence rates. Problematically, we find that while over 100 studies have been conducted and give us credible estimates for concussion incidence, this incidence data is absent from current educational materials delivered to athletes and parents. We argue, based on this data, that concussion risk can be better communicated to athletes and parents. The data on incidence rates remains incomplete, but it is still informative. We should not hide it from youth athletes.

DOI: https://doi.org/10.15779/Z38MS3K20S

α. B.S. Neuroscience & B.A. Psychology, University of Minnesota
β. Dept. of Neuroscience, University of Minnesota
γ. B.S. Neuroscience, University of Minnesota
δ. MD, Ohio State; J.D. Candidate, University of Minnesota Law School
ε. Associate Professor of Law & McKnight Presidential Fellow, University of Minnesota; Director, Shen Neurolaw Lab; Senior Fellow, Harvard Petrie-Flom Center and Affiliated Faculty Member, MGH Center for Law, Brain, and Behavior; Executive Director of Education & Outreach, MacArthur Foundation Research Network on Law and Neuroscience. Contact: Walter F. Mondale Hall, 229-19th Avenue South, Minneapolis, MN 55455, 612-625-5328, fxshen@umn.edu. Acknowledgements: Preparation of this article was supported in part by the University of Minnesota Law School, and a University of Minnesota Grand Challenges Grant. For helpful feedback and advice, we thank members of the Grand Challenges Grant team and the Big Ten/Ivy League Traumatic Brain Injury Research Collaboration. For excellent research assistance, we thank Meredith Gingold, Courtney Quam, Mary Riverso, and Alina Yasis. Finally, Shen notes that his work is Ad Majorem Dei Gloriam.
**Table of Contents**

Abstract ................................................................................................................................. 67
Introduction .......................................................................................................................... 69

I. Concussion Incidence in Media, Legal Scholarship, and Policy Debates .......... 71
   A. Media ............................................................................................................................. 71
   B. Legal Scholarship ......................................................................................................... 75
   C. Public Policy ............................................................................................................... 76

II. How Do Researchers Measure Youth Sports Concussion Incidence Rates? .... 78
   A. Caution: Lack of Research on Younger Athletes ....................................................... 78
   B. Identifying Studies for Inclusion in the Review ......................................................... 81
   C. How Concussion Incidence is Measured ..................................................................... 81
      1. Medical Records ...................................................................................................... 82
      2. Injury Surveillance Systems ..................................................................................... 83
      3. Athlete Self-Report ................................................................................................. 86

III. What We Know: Detailed Review of Research on Youth Sports Concussion Incidence
    Concussion Incidence ........................................................................................................ 86
    A. Different Methodologies, Different Incidence Rates ................................................. 88
    B. Average Concussion Incidence Rates ........................................................................ 90
    C. Variation in Incidence Rates Across Sports .............................................................. 100
    D. Concussion Incidence Has Risen Over Past 15 Years ............................................. 101
    E. Increase in Reported Concussions Most Likely Due to Changes in Reporting Practice .................................................................................................................. 102
    F. Most Concussion Symptoms Resolve Within Three Weeks .................................. 104
    G. Previous Concussions Increase Risk ......................................................................... 105
    I. Female Athletes Experience Higher Concussion Incidence Rate ................................ 107
    J. Return to Play on Same Day Has Fallen Dramatically Over Past 15 Years ............. 109

IV. Discussion ........................................................................................................................ 109
    A. We Need Better Concussion Measurement Tools .................................................... 110
    B. We Need to Know More About Sub-Concussive Impact ........................................ 111
    C. We Need to Know More about the Long-Term Effects of Sports Concussions .......... 113
    D. We Need to Know More about Racial and Socioeconomic Inequality and Sports Concussion ............................................................................................................. 115
    E. Improving Concussion Risk Communication ............................................................ 117

V. Conclusion ......................................................................................................................... 119

Appendix, Literature Review Table: Incidence of Youth Head Injuries ....... 122
INTRODUCTION

Should kids play football? Or hockey? Or soccer? Or any contact sport?

Some experts advocate for banning many youth sports altogether. Dr. Bennet Omalu, the neuropathologist portrayed by Will Smith in the movie Concussion, has called for an end to football.1 Many seem to agree, as a national poll found that nearly 50% of Americans would encourage children to avoid playing contact football altogether.2 Legislators in Illinois and in New York have proposed eliminating youth tackle football.3

A school board candidate in Clark County, Nevada even ran his campaign on the platform of eliminating high school football. The candidate expressed concern that, “The human brain is not designed to play the collision sport of football. We do not have an airbag between the brain and the skull.”4

However, there has been strong pushback to these arguments. For example, opponents to the school board candidate called him a “nanny state liberal.”5 In Ohio, some high school football coaches perceive their game as “under attack” and have voiced frustration towards “a society where we think everything needs to be safe.”6

Central to resolving policy and legal disputes, and to informing parent and student-athlete decision-making, is relevant data on concussion incidence rates. As former President Barack Obama said in 2014 at the White House Healthy Kids and Safe Sports Concussions meeting, “[w]e’ve got to have better research, better data, better safety equipment, [and] better protocols” about youth sports concussions.7

2. Matthew Santoni, More Fear ‘Tackle’ Football Too Risky for Kids, TRIB LIVE (Dec. 17, 2014, 9:02 PM), http://triblive.com/neighborhoods/alleghenynearborhoods/alleghenyneighborhoodsmore/738308874/football-percent-contact (“How likely would you be to encourage your child or another child to avoid playing contact football altogether? — 46.7 percent were either very or somewhat likely.”).
5. Id.
In this Article we focus on the question: how likely is it that youth participation in sports will result in a concussion? By reviewing over 100 studies, we strive to provide the legal and policy community with a review of the current scientific literature on concussion incidence rates in youth sports.

In doing so, we uncover a disconnect between concussion research and concussion laws. As reported in our Appendix, studies in fields spanning pediatrics, sports medicine, neurology, neuroscience, neurobiology, public health, neuropsychology, athletic training, and epidemiology have followed more than 1,000,000 athletes (ages 4-22), examined over 45 different organized sports, and assessed injuries across over 40,000,000 hours of athletic activity. These studies provide us with valuable information about the contours of brain injury risk in youth sports.

Yet almost none of the legally mandated concussion education material that is delivered to parents and athletes makes any mention of the actual risk of concussion. Under current concussion laws, athletes must sign legal waivers that typically read, “I hereby acknowledge having received education about the signs, symptoms, and risks of sport related concussion.” But are athletes truly “informed” about the risks if they never receive any actual risk data? We believe the answer is no, and argue that concussion education materials should include carefully developed information about the known risks of injury from concussion and sub-concussive hits.

To be sure, we recognize that providing information on concussion risk is not easy. Our review of the literature suggests a complex picture. On one hand, the majority of youth athletes—even those in collision sports—will not sustain a concussion. Moreover, a vast majority of those who do experience a concussion will see their post-concussion symptoms dissipate within three weeks. In this sense, there is a problematic gap between the rhetoric of some critics and the actual incidence data. Youth sports, even youth football, wrestling, hockey and soccer, may not be as dangerous as some suggest.

On the other hand, there are serious risks of brain injury from playing contact sports before and during high school. These risks are elevated in collision sports, and current data collection methods likely underestimate actual incidence rates. For some athletes and parents, these risks may outweigh the potential benefits that those sports provide.

Making the data even more complex is the recognition that it remains incomplete. The majority of studies we review here do not examine incidence rates for youth below age 14, and the underlying neurobiology of youth brain injuries also remains unknown. The lack of reliable, objective measures of concussion make it challenging to know the extent to which current estimates are underreporting concussion, and there is a paucity of data on sub-concussive impacts, particularly their effects over the lifespan. Moreover, with but a few exceptions, there is little discussion of the benefits of contact sports.
Taken together, current data on youth sports concussion incidence supports neither extreme of the current policy debate. Policy proposals calling for the elimination of youth football, hockey, and other collision sports are overly paternalistic. Yet the data also suggests that collision sports are more dangerous than the rest. We may be significantly undercounting concussions, and the accumulation of sub-concussive incidents may also be detrimental to brain health.

Our view is that although the research is still incomplete, it is nonetheless informative. Concussion policy should encourage transparency. Specifically, concussion education—which is required by current law in most states to be provided to parents and athletes—should effectively communicate the actual concussion risk to student-athletes and parents. Concussion policy should also account for possible long-term effects of brain injury, and be more aware of how concussion care may be related to racial and socioeconomic inequality.

The Article proceeds as follows. In Part I, we briefly review how discussion of concussion incidence rates is either missing or uninformed in current policy and law. In Part II, we introduce the methods used by researchers to estimate concussion incidence in youth sports. In Part III, we review in detail this research literature on incidence rates. In Part IV, we discuss the implications of the research. We focus on emerging opportunities for improving objective measurement of youth sports concussion. We also argue that concussion education provided to athletes and parents should include information about concussion incidence risk. Part V concludes.

I. CONCUSSION INCIDENCE IN MEDIA, LEGAL SCHOLARSHIP, AND POLICY DEBATES

Legal and policy debates on sports concussions, as well as accompanying scholarly commentary, often cite to statistics about the incidence of brain injury in youth sports, especially football and hockey. But as we show in this Part, discussion of incidence rates is often misinformed—or absent altogether.

Section A briefly surveys select media coverage, Section B explores legal scholarship, and Section C examines the concussion education sheets that are provided, as mandated by state law, to prospective student-athletes and their parents.

A. Media

The public’s interest in concussions has risen dramatically over the past decade. To empirically track this rise in interest, we examined the trends in Google searches for “concussion” from 2004 to the present. As shown in Figure 1, there has been a strong, steady climb in interest.

The media has played an important, if sometimes problematic, role in this
expansion of interest in sports concussions.\textsuperscript{8} Not surprisingly, given the media’s need to attract readers and viewers, there is a general penchant for sensationalist headlines and reporting that glosses over the nuance of actual statistics.\textsuperscript{9}

\textsuperscript{8} Rebekah Mannix et al., \textit{Sports-Related Concussions—Media, Science and Policy}, 12 \textit{NATURE REV. NEUROLOGY} 486, 486 (2016) (discussing public perception of concussions in sports and that the resulting calls to abolish collision sports like football might be “premature” without more knowledge of the harmful consequences of concussions); \textit{See generally T. Blake et al., Prioritizing Concussion Prevention in Youth Ice Hockey: An Assessment of English-Language Canadian Newspapers as a Vehicle for Evidence-Based Knowledge Translation}, 48 \textit{BRIT. J. SPORTS MED.} 570, 570 (2014) (study evaluating media coverage of concussions and “evidence-based injury prevention knowledge” being conveyed to the public).

\textsuperscript{9} \textit{See generally Katarzyna Molek-Kozakowska, Towards A Pragma-Linguistic Framework for the Study of Sensationalism in News Headlines}, 7 \textit{DISCOURSE & COMMUNICATION} 173, 173-4 (noting that “[n]ews outlets, which compete for audience attention to secure their profits from advertising, try to make their information appear relevant, urgent or unusual. For this purpose they customize news through selectivity or enhancement, generalization or simplification, emotionalism or sensationalism.”)
Figure 1. Public interest in the United States in concussions over time, measured in popularity of Google searches for concussion from 2004-2016

What to Notice in Figure 1: The most important thing to notice in Figure 1 is that there has been a steady increase in public interest in concussions over the past decade. Data for this graph was retrieved from the Google trends search engine at https://trends.google.com/trends/. A search was conducted on July 25, 2017 using the search key word “concussion” and the search from “2004-Present” (non-real time) parameters. The search was limited to searches made from locations within the United States. Non-real time Google trends data takes a random sample of all Google searches performed within the United States during the specified time period. Currently, data is available from 2004 through the present. This data is normalized based on the region selected. That is, the search for “concussion” in the United States presents the search interest as a proportion of all Google searches during a particular time. Thus, search interest = (# of searches for keyword) / (total Google searches). This data is further normalized such that the maximum search interest across the time period for that particular region is indexed to 100.10 Data points from each month were then averaged to demonstrate yearly trends in the popularity of the term “concussion”.

It is not hard to find provocative media statements about youth contact sports such as “enrolling a child in a contact sport could be as hazardous as giving

---

them cigarettes.” News articles and television specials speak about the fact that “youth concussions are an epidemic,” and feature NFL players that “advise [youth athletes] and their parents to avoid the game [football] at all costs.” A few examples include:

- A columnist in a Lancaster, Pennsylvania paper observed: “while we have little idea of the effectiveness of various treatments and safety measures, what is absolutely not in doubt is that playing tackle football is damaging to the brain. That is indisputable. The only question is the extent of the damage.”

- After a study on chronic traumatic encephalopathy (CTE) in deceased NFL players was released in summer 2017, USA Today ran a story under the headline: “How many more dead athletes before we address CTE?”

- At the University of Illinois, the student-run campus newspaper ran both a long form story on concussion, and an associated editorial. The editorial had the headline: “Concussion epidemic careening out of control.”

This media coverage is important because it sparks debate about the ways in which we can make youth sports safer. But there is a balance to be struck.

---


15. Daniel Engber, Inflategate, SLATE (July 26, 2017), http://www.slate.com/articles/sports/sports_nut/2017/07/the_press_is_overhyping_the_latest_study_on_cte_in_the_nfl.html (criticizing the media coverage of this study).


17. To be sure, there are longer form treatments that often attempt to devote more word space to the complexities. See, e.g., the collection of online articles in Max Linsky, The Longform Guide to Football in Crisis, SLATE (Sept. 2012), http://www.slate.com/articles/sports/longform/2012/09/football_concussions_and_what_they_mean_for_the_s_future_a_longform_guide_.html. Moreover, a cursory search of news sites suggests to us that we may be witnessing a shift in the way that news media discusses concussion. The concussion hype seems to have peaked in 2015 and early 2016, which may be linked to the release of the movie Conussion as well as outspoken remarks by Dr. Bennet Omalu (the researcher at the center of the movie). Since then, the quotations directly from researchers into concussion have
concussion researcher Dr. Dawn Comstock has observed: “We should try to prevent concussions, but we should not let the fear of concussions or any sports-related injuries drive kids out of playing sports.” Critical to achieving that balance is careful attention to the details of concussion incidence.

**B. Legal Scholarship**

The legal literature on youth sports concussions has been growing. Some commentary, such as that by law professor Hosea Harvey, explicitly recognizes the challenge of accurately measuring concussion incidence rates. Harvey observes:

“There is no comprehensive reporting mechanism at the state or national level to identify all instances of youth TBIs (Traumatic Brain Injuries) during a given year or the percentage of those caused by youth sports. Therefore, it becomes necessary to rely on estimates, anecdotes, and/or incomplete reporting systems to establish baseline population data. Because specific data are lacking at both the national and state level, experts acknowledge a high degree of uncertainty notwithstanding their general agreement about the significance of the problem.”

Harvey’s treatment of the data challenges is nuanced, but often in legal scholarship such careful treatment is instead replaced by a cursory glance at the statistics.

For instance, an article in the *Sports Lawyers Journal* cited the Center of Disease Control (CDC) statistic that “estimates 1.6 to 3.8 million traumatic brain injuries occur each year as a result of sports and recreation[al] activities.” In the next sentence, the author then concludes that “this is sufficient proof that ‘concussions from sports are an epidemic in this country.’” Jumping so quickly often spoken to the positive aspects of youth sports and the necessity of proper safety protocols, but not quitting the game. Further research might identify more systematically whether this is indeed a trend.

18. Zach Braziller & Joseph Staszewski, *Hard Knocks for Kid Grid*, NEW YORK POST (Oct. 11, 2016) (Dr. Comstock, an associate professor of epidemiology at the Colorado School of Public Health, stated that children may take longer to recover from concussions because their brains are still developing. The article also notes that the rise in concussion might be due to higher instances of reporting due to more knowledge about concussions, rather than because more concussions are occurring).

19. CTE research has also been in the news. In 2017, a group led by Bennet Omalu published an article in which they reported using positron emission tomography (PET) to identify chronic traumatic encephalopathy (CTE) in a living human. Yet the science of CTE is in need of refinement and further research. See Andrew Gardner et al., *Chronic Traumatic Encephalopathy in Sport: A Systematic Review*, 48 BRIT J. SPORTS MED 84 (2013).


21. Id. at 75.


23. Id. (quoting Study Links Concussions to Brain Disease: 60 Minutes Looks at Alarming New Research on the Longterm Effects of Concussions and Head Trauma, CBS NEWS (Oct. 11,
to such conclusions, without careful consideration of the underlying data, is problematic. But it is something we see regularly in the scholarship. To illustrate, here are some of the ways in which legal scholars have described concussion incidence:

- “Sports concussions are common in young athletes.”
- “Today the sports world faces a . . . crisis from the epidemic of serious and often permanent brain injury.”
- “. . . studies show athletes between the ages of five and fourteen are far more susceptible to catastrophic brain injury resulting from the exposure to repetitive head contact, than any other age group.”
- While injuries in professional sports make headlines, “[f]or every concussion . . . occurring at the professional sports level, there are tens of thousands of injuries at the high school level and below.”

In these and other pieces of commentary, legal scholars are missing opportunities to more carefully engage with the data on youth sports concussion incidence.

C. Public Policy

Inattention to detail in scholarship is one thing; policies that don’t provide sufficiently detailed information to athletes and parents are of even greater concern. Notably, none of the concussion education material regularly made available to athletes directly addresses the question: How likely is it that you will receive a concussion playing this sport?

For instance, the CDC “Parent & Athlete Concussion Information Sheet,” a publication of their HEADS UP Concussion in Youth Sports education and

---

24. Moreover, attributing all of these concussions to organized sports is problematic because the “sports and recreation” category includes not only organized team sports, but also injuries sustained at the playground or biking around the neighborhood.


prevention initiative, makes no mention of the potential risks.\textsuperscript{29} Not a single statistic is mentioned.\textsuperscript{30} The same is true for every state concussion education fact sheet we were able to examine.\textsuperscript{31}

To take just one illustrative example, consider the “Wisconsin Fact Sheet for Athletes.”\textsuperscript{32} The information sheet includes the following sections:

- What is a concussion?
- What are the signs and symptoms of a concussion?
- Common symptoms of a concussion.
- Anatomy of a concussion
- What should you do if you think you have a concussion?
- Why should you tell someone about your symptoms?
- Tell your teachers

All of this information about concussions is important to provide to athletes. But in Wisconsin, and in similar information sheets in other states, there is no mention of the likelihood of sustaining a concussion.

To be sure, as we discuss in Part IV, effectively communicating such information is not a simple task. But leaving the information completely absent from the educational materials creates a gap—a gap that is filled by the often-imprecise media reports we just reviewed. In other research, our Lab has found that the American general public overestimates youth concussion incidence in football.\textsuperscript{33}

In sum, what athletes, parents, coaches, and policymakers need is better, evidence-based information on the actual risks and benefits of participation in


\textsuperscript{30} See id. The closest the form gets is stating (without a citation): “Young children and teens are more likely to get a concussion and take longer to recover than adults.”

\textsuperscript{31} For each state, we reviewed the concussion information sheets as available online. The closest that a state concussion information sheet was to identifying risk of incidence was the following statement, found in the Arizona and Maine sheets: “Based on the incidence of concussion as published by the CDC the following sports have been identified as high risk for concussion: baseball, basketball, diving, football, pole vaulting, soccer, softball, spiritline and wrestling.” New York’s sheet mentioned that “An estimated 4 million people under age 19 sustain a head injury annually. Of these approximately 52,000 die and 275,000 are hospitalized. An estimated 300,000 sports and recreation related concussions occur each year. Students who have had at least one concussion are at increased risk for another concussion. In New York State in 2009, approximately 50,500 children under the age of 19 visited the emergency room for a traumatic brain injury and of those approximately 3,000 were hospitalized.”


youth sports. Thankfully, to date there have been over 100 studies conducted that can inform our estimate of concussion risk. We review these studies in the next Part.

II. HOW DO RESEARCHERS MEASURE YOUTH SPORTS CONCUSSION INCIDENCE RATES?

In this and the next Part, we review the research literature on youth sports concussion incidence rates. Those readers who want only the summary points should skip to Part III. However, we encourage readers to review this Part, where we identify a series of cautions that must precede evaluation of the studies.

We limit our focus to “youth” by examining studies of athletes aged high school and younger. We excluded studies on NCAA athletes and professional athletes. This focus was motivated by two reasons. First, the scope of state youth sports concussion laws only reaches high school and youth sports.34 Second, the majority of the nation’s athletes are high school or younger athletes.35

Section A starts with a caution about the comparative lack of research on younger age cohorts. Section B discusses our search methods for identifying research studies on point. Section C summarizes the three primary types of methodologies that researchers have used to estimate concussion incidence: hospital records, surveillance studies, and athlete self-report.

A. Caution: Lack of Research on Younger Athletes

There is significantly less concussion incidence research on populations younger than highschool. Concussion in college and professional sports has been the subject of much on-going research.36 In addition, there is increasing research on high school athletes, with sophisticated high school data collection systems now in place for some schools.37 Comparatively little research exists on the younger age cohorts. Thus, as shown in Figure 2, there is a mismatch between the number of athletes in each age cohort and the number of research studies.

Less is known about athletes below high school age because it is a more difficult population to research. For instance, athletic trainers responsible for identifying concussions in high school populations “cited unfamiliarity with the youth population as the greatest challenge in assessing concussion, also noting that young children may lack understanding of concussion symptoms.”

Because of this lack of research, we must proceed cautiously. In particular, we do not know how well the incidence rates derived from studies of older cohorts informs concussion incidence rates in younger cohorts. The need for research in this area is so important that the international consensus statement from the Conference on Concussion in Sport in 2016 emphasized “[t]he paucity of studies that are specific to children, especially younger children, needs to be addressed as a priority.”

---

Figure 2. Illustrating the Comparative Lack of Research on Sports Concussions in Youth Younger than High School Age: Graph of 2008-2010 Sports Participation Rates and Number of Studies, by Age Group

There are 36 million athletes younger than high school age, and 8 million high school age athletes. Yet there are 62 studies of sports concussions in high school age populations and only 17 in younger populations.

What to Notice in Figure 2: The most important thing to notice is the discrepancy between much greater participation in youth sports (younger than high school age), contrasted with much less research on sports-related concussions in that age group. Figure 2 makes two comparisons. On the left hand (A) side of the Figure, we graph the estimated number of participants in youth and in high school sports. The youth estimates are based on 2008 participation data collected and reported by the National Council of Youth Sports in 2008.40 The high school participation data is based on 2008-2009 academic year participation collected and reported by the National Federation of State High School Associations in 2010.41 On the right hand (B) side of the Figure, we graph the number of scholarly research studies on sports concussions in both age cohorts. Appendix A discusses how studies were identified and coded, and provides a list of studies included in each column. For studies that examined both high school and younger populations we coded them in both groups.

B. Identifying Studies for Inclusion in the Review

We focused our attention on studies examining concussion incidence in high school aged and younger athletes. Articles reporting the incidence of youth head injury were identified using Google Scholar, PubMed, the electronic databases of MEDLINE and Sport Discus, and the University of Minnesota library electronic catalog system. Review articles and books were consulted to capture a wide range of references. Articles were initially identified using the following search key words: youth, adolescent, pediatric, child, sport, athlet*, concussion, mild traumatic brain injury, head injury, incidence, prevalence and epidemiolog*.

Abstracts and articles were reviewed for inclusion. Our inclusion criteria were: (i) original, published research; (ii) evaluated the incidence/prevalence/epidemiology of sports-related concussion or mild traumatic brain injury; and (iii) included youth (< 19 years) as study subjects. This review excluded studies that were published in a language other than English, or were not peer-reviewed.

C. How Concussion Incidence is Measured

There are three primary sources of data for estimating sports-related concussion (SRC) incidence: medical records (primarily from hospital emergency departments), injury surveillance systems (i.e., third parties such as trainers who survey athletic activity and identify concussions), and athlete self-report data (i.e., where athletes are asked, usually retrospectively, if they have sustained a concussion). We review each of these approaches below.

One of the challenges in assessing concussion incidence is defining “concussion.” The word concussion is a derivative of the Latin word concussus, which means to shake violently. Today, however, concussion is diagnosed...
without objective physical biomarkers and thus presents the clinician with significant diagnostic challenges. As a result, there is no consistent definition of concussion either within or across methodology, and there is no consistent denominator from which the incidence rate can be calculated and compared across methodologies. We must keep this in mind as we review the findings because comparisons across studies, and in particular across research methodologies, may be difficult.

1. Medical Records

One common method of estimating SRC incidence is to examine hospital records. Amongst concussions treated by health care providers, the majority are outpatient or emergency department visits. The CDC and the United States Consumer Product Safety Commission (CPSC) surveil hospital emergency departments from which estimates of the national incidence of medically-attended SRC can be drawn. In general, the CDC uses International Classification of Disease (ICD) diagnosis codes to identify SRC. The literature based on medical record data thus frames this discussion in terms of sports and recreation-related traumatic brain injury, the broader category of brain injury into which concussions fall. The CPSC’s National Electronic Injury Prevention Surveillance System (NEISS) matches the physician’s diagnosis (usually an

44. See Paul McCrory et al., What is the Definition of Sports-Related Concussion: A Systematic Review, 51 BRIT. J. SPORTS MED. 877, 886 (2017) (noting that there is “no gold or reference standard for SRC diagnosis” and anticipates that “in the future, head injury and concussion may eventually be defined by the severity of clinical signs, as well as . . . biomarkers”).


48. In the medical-based literature, concussions are considered to be a sub-set of mild traumatic brain injury (mTBI). These cases of mTBI are reported in an aggregate, and it is impossible to distinguish sub-sets of mTBI such as concussion. In some of the literature, mTBI and concussion are considered interchangeable terms. See Paul McCrory et al., Consensus Statement on Concussion in Sport: The 4th International Conference on Concussion in Sport Held in Zurich, November 2012, 47 BRIT. J. SPORTS MED. 250, 250 (2013).

ICD code) with one of the provided NEISS diagnostic codes, one of which is “concussion.” The NEISS is the sole nationally representative stratified probability sample, and it provides a valuable repository for United States youth concussion data. However, specifying SRCs from NEISS and other medical data can be difficult. In addition, incidence is often presented as a national estimate based on U.S. Census data (likely not reflective of participation).

Using emergency room data to assess the incidence rate of youth concussion has several limitations. For one, ICD codes and other administrative database tools cannot always specify whether concussions occurred during an organized sport event or whether they were just the result of playing baseball in the backyard. In addition, ICD codes captured by these studies are often under or over-inclusive of SRCs as the diagnosis. In fact, a 2015 report from the CDC claimed that “[u]sing current data systems it is not possible to describe sports- and recreation-related TBIs as a separate category for those who are hospitalized or die as the result of sports- or recreation-related TBI.” Despite these limitations, emergency room data is useful for identifying concussion incidence trends over time and across age groups.

2. Injury Surveillance Systems

Injury surveillance systems have been a primary source of youth sports-related concussion incidence. Here, “surveillance” is an epidemiological term dataset to only injuries involving “baseball bat” or “volleyball net” in order to find sport-specific data. Since 2001, the NEISS has also been augmented with the NEISS-All Injuries Program (AIP); this is a subset of 66 hospitals where all cases, not just ones related to consumer products, are included.


53. See, e.g., Coronado et al., supra note 52, at 194.

54. REPORT TO CONGRESS, supra note 52, at 23.

55. Id.

56. Id. at 23.

57. For example, the results of the High School Sports-Related Injury Surveillance Study, Reporting Information Online (HS RIO) has been cited over 700 times according to Google Scholar. The High School RIO has formed the basis for over 100 publications http://www.ucdenver.edu/academics/colleges/PublicHealth/research/ResearchProjects/piper/projects/RIO/Pages/Publications.aspx, accessed April 20, 2018.
of art, referring to “the ongoing systematic collection, analysis, and interpretation of outcome-specific data for use in the planning, implementation, and evaluation of public health practice.” In general, these approaches rely on certified athletic trainers employed at the sampled schools or teams to report injuries and exposure time for athletes via an online interface. For high school athletes, there are two major extant surveillance systems. Both are national systems: (1) the High School Reporting Information Online (HS RIO), part of the National High School Sports-Related Injury Surveillance System Study; and (2) the National Athletic Treatment, Injury and Outcomes Network (NATION). There was also one regional system, the Fairfax County Public School System Injury Treatment Tracking System. By contrast, there is only a single surveillance system for youth athletes – the Youth Football Safety Study (YFSS).

The National High School Sports-Related Injury Surveillance Reporting Information Online System (RIO) is an internet-based injury reporting system, drawing from all U.S. public high schools with a National Athletic Trainers’ Association (NATA) certified athletic trainer. Concussions are defined


59. Beyond these major surveillance systems, additional sport-specific (e.g. for ice hockey, soccer or football) and regional (e.g. in Washington State) surveillance systems exist with variable reporting methods and criteria for concussion.

60. The HS RIO is a stratified national sample of 100 U.S. public high schools with a National Athletic Trainers’ Association (NATA) certified athletic trainer who is willing to report information. It attempts to mirror the NCAA Injury Surveillance System. It has been in effect since the 2005-2006 school year collecting data across 9 high school sports: football, boys’ soccer, girls’ soccer, boys’ basketball, girls’ basketball, wrestling, baseball, volleyball, and softball. During the 2008-2009 academic year an additional convenience sample expanded the study to ensure that rarer sports (girls’ gymnastics and field hockey, boys’ ice hockey and volleyball, and boys’ and girls’ lacrosse, cheerleading, track/field, and swim/dive) were also represented in the study.


63. The YFSS is managed by the Datalys Center, which also runs the NCAA ISS and the NATION, with support from USA Football. It captures a convenience sample of non-school football teams for youth 5 to 14 across 6 geographically distinct states. See Youth Football Safety Study, DATALYS CENTER (2014) http://www.datalyscenter.org/youth-football-safety-study/, Zachary Y. Kerr et al., Injury Rates in Age-Only Versus Age-and-Weight Playing Standard Conditions in American Youth Football, 3 ORTHOPAEDIC J. SPORTS MED., Sept. 23, 2015, at 1.

64. For the most current NATA position statement regarding “concussion,” see Steven P. Broglio et al., National Athletic Trainers’ Association Position Statement: Management of Sport Concussion, 49 J. ATHLETIC TRAINING 245 (2014).
according to the participating athletic trainers, and have only included non-time loss injuries (e.g. no participation time lost from games or practice) since the 2007-08 academic year.\textsuperscript{65} By contrast, the National Athletic Treatment, Injury and Outcomes Network captures both time-loss and non-time loss injuries.\textsuperscript{66}

In all systems, “concussion” is reported as a specific diagnosis in an injury form, online portal or athletic data management tool particular to each system.\textsuperscript{67} However, there are no specific criteria that a case must meet to be classified as a concussion; it is up to individual athletic trainer’s discretion and the reporting guidelines in individual states or districts.\textsuperscript{68} All four surveillance systems also report injury incidence rate as a function of athlete-exposures (AE), or 1 athlete participating in 1 game or practice.\textsuperscript{69} To illustrate, if a league has 10 teams, each team has 20 players, and all players complete a season with 40 practices and 10 games, this would represent 10,000 AEs. If there is a reported incidence rate of 0.5 concussions per 1,000 AEs, that would indicate an average of 5 concussions occurring during that season across the entire league of 10 teams.\textsuperscript{70}

Even within sports-injury surveillance systems, there may be significant differences between reported concussion incidence rates for high school and youth athletes. Epidemiologist Zachary Kerr and colleagues compared a sample of sports-injury surveillance systems that are often used to estimate concussion incidence rates.\textsuperscript{71} Different surveillance systems report information from different sports, and the same system may change which sports are reported over time, such as the HS RIO. In particular, sports such as rugby, water polo, equestrian and figure skating may lack representation in surveillance systems due to low participation numbers or low visibility.\textsuperscript{72} Even commonly studied sports such as ice hockey have poor representation in national samples of high school

\begin{footnotes}
\item[66] Dompier et al., \textit{supra} note 60, at 583.
\item[68] Id at 419; Nicholas J. Lombardi et al., \textit{Accuracy of Athletic Trainer and Physician Diagnoses in Sports Medicine}, 39 ORTHOPEDICS 944, 945 (2016) (There is high concordance between concussion diagnoses from athletic trainers, and concussion diagnoses from a physician (kappa = 0.99). However, it is uncommon for athletic trainer cases to be seen by a physician, and these tend to be the most severe cases, which may inflate concordance.).
\item[70] For further description of athlete exposures, as well as alternative methods of presenting concussion incidence, see Zachary Y. Kerr et al., \textit{Epidemiologic measures for quantifying the incidence of concussion in National Collegiate Athletic Association sports}, 52 J. ATHLETIC TRAINING 167 (2017).
\item[71] See Kerr et al., \textit{supra} note 66.
\item[72] See Kerr et al., \textit{supra} note 66, at 415.
\end{footnotes}
Another major concern is the denominator used by individual surveillance system to determine risk. Determining absolute time of participation of athletes is often unfeasible. It is not possible for a reporter to be present at all practices and games across all sports. Thus, the assumption in calculations based on athlete-exposures is that each AE is equal to another, i.e. that Athlete X is exposed to as many risks as Athlete Y during a practice or game. But this generally assumes that everyone on the roster participates equally at every event, overlooking the reality that some athletes may play a lot while others may not. Finally, injuries occurring during outside training such as weightlifting are often entirely discounted by sports surveillance systems.

3. Athlete Self-Report

Another group of studies has determined concussion incidence using self-report data from athletes. These types of studies are based on questionnaires, often including symptom and signs lists, either alone or in conjunction with interviews. Self-report data, particularly data collected post-season or anonymously, often results in significantly higher estimations of concussion incidence than demonstrated by either medical record or injury surveillance system data. For instance, in one study of youth amateur ice hockey players, concussion incidence rates were 30 times higher in retrospective self-report than official records. This gap between official records and self-report data is problematic. Both of the other major methods for determining incidence are dependent on athletes reporting concussions or concussion symptoms to medical professionals; this may contribute to significantly underestimating the true incidence. On the other hand, athlete self-diagnosis may overestimate incidence. Without more objective assessment criteria, it is hard to know.

III. WHAT WE KNOW: DETAILED REVIEW OF RESEARCH ON YOUTH SPORTS CONCUSSION INCIDENCE

Based on the inclusion criteria discussed above, in this Part we review the peer-reviewed studies to date of youth sports concussion incidence. Our review suggests the following conclusions.


74. None of the four major surveillance systems described above report injuries sustained during outside training.

1. First, precisely estimating the actual incidence of youth sports concussions is difficult because different research methodologies lead to markedly different conclusions. For instance, estimating the number of sports-related concussions amongst youth athletes using emergency department data likely underestimates incidence.

2. Second, and recognizing many caveats about methodology, it appears that across all high school sports for which data has been collected, the incidence rate of sports concussion is roughly between 0.4 to 0.5 concussions per 1,000 athlete encounters (“AEs”). Athlete encounters include both practices and games.

3. Third, there is great variation from sport-to-sport in concussion rates, ranging from 0 to 0.92 concussions per 1,000 AEs. Sports with the consistently highest concussion rates are football, wrestling, ice hockey, soccer, and lacrosse. To illustrate, if a youth football league has 10 teams, with 25 athletes per team, playing 4 days a week for 15 weeks, that league will have 15,000 athlete exposures and should, on average, expect about 8-10 concussions for the season. A high school league of 10 teams, with more athletes and more practices per week, will have 45,000 athlete exposures and should expect between 20-40 concussions per season.

4. Fourth, in the past 15 years, reported concussion incidence, and associated concussion incidence rates, have approximately doubled in youth sports.

5. Fifth, this increase in reported concussions is likely due to improved reporting, rather than an increase in concussions.

6. Sixth, although the data is not robust, it is very likely the case that most concussions are not “severe” concussions. That is, post-concussion symptoms resolve on their own, within 2-3 weeks, for roughly 90% of youth athletes.

7. Seventh, concussion risk and severity is increased by a history of prior concussion, and several studies have shown high rates of recurrent concussions in youth populations.

8. Eighth, symptom recovery is slower in youth and high school athletes.

---

76 See, e.g., Kevin M. Guskiewicz et al., Cumulative Effects Associated with Recurrent Concussion in Collegiate Football Players: The NCAA Concussion Study, 290 J. AM. MED. ASS’N 2549 (2003) (finding that players reporting a history of three or more previous concussions were three times more likely to have an incident concussion than players with no such history); Eric D. Zemper, Two-Year Prospective Study of Relative Risk of a Second Cerebral Concussion, 82 AM. J. PHYSICAL MED. & REHABILITATION 653 (2003) (finding the relative risk for individuals with a history of concussion to be 5.8 times greater than for individuals with no history).

athletes than collegiate athletes.\textsuperscript{78}

9. \textit{Ninth}, female athletes appear to experience as high as double the rate of concussions as their male athlete counterparts in comparable sports. This finding, as well as additional demographic variation in concussion incidence, remains in need of further research.

10. \textit{Tenth}, in the past 15 years, return to play within 24 hours has significantly decreased; today, less than 1\% of concussed athletes return to play within a day. This is a marked change from previous decades, when up to 50\% of athletes returned to play on the same day.

We now review the evidence for each of these ten conclusions.

\textbf{A. Different Methodologies, Different Incidence Rates}

Emergency room data is often used to calculate incidence rates. According to the CDC, youth injuries represent a significant portion of all sports- and recreation-related traumatic brain injuries in the emergency department.\textsuperscript{79} Emergency room data is often cited by legislators and used to shape policy discussions.\textsuperscript{80} For example, a short review essay of CDC emergency room data has been cited over 2,000 times.\textsuperscript{81} Yet, emergency room data is limited in what it tells us about youth sports concussion incidence.

Although there have been prior attempts to review and meta-analyze the incidence and incidence rate of sports-related concussions, there have been significant difficulties in synthesizing an accurate picture of SRC in the United States youth athlete population. There are three primary issues: (1) there is significant variation in study methodology, with varying criteria for concussion definition; (2) different study methodologies employ different denominators, and even studies using ostensibly the same denominator may calculate incidence and incidence rate differently;\textsuperscript{82} and (3) incidence and incidence rate vary significantly across age, gender, sport and practice vs. competition.

For example, in one meta-analysis of youth SRC, researchers estimated a
How dangerous are youth sports for the brain?

The concussion incidence rate of 0.23 concussions per 1,000 athletic exposures (AEs)\(^{83}\) However, in the 14 sports\(^{84}\) included in the studies, rates ranged from less than 0.06 concussions per 1,000 AEs in volleyball and baseball up to 4.18 per 1,000 AEs in rugby, 1.2 per 1,000 AEs in ice hockey, and 0.53 per 1,000 AEs in football.\(^{85}\) To translate, a team of 20 volleyball players might expect less than 1 concussion a season, while a team of 20 hockey players would expect about 12 concussions a season. And even within sports, wide variations exist: a study of 11- to 12-year-old football players reported over 2.5 times the incidence rate of concussions as seen in high school players.\(^{86}\)

Even limiting by sport and age range does not eliminate variation. Another review of the literature reported incidence rates ranging from 0.47\(^{87}\) – 1.03\(^{88}\) concussions per 1,000 athlete exposures amongst high school football players.\(^{89}\) Thus, it is unknown whether this difference is the result of actual differences in underlying concussion incidence, or simply the result of methodological differences.\(^{90}\)

In addition, the incidence of concussions captured by different databases and surveillance systems can lead to very different conclusions. For example, using emergency room NEISS data from 2005 to 2013, one study estimated that 1,459 concussions occurred amongst soccer players aged 14 to 17 years.\(^{91}\) By contrast, the same authors estimated that 604,371 concussions occurred amongst high school (aged ~14 to 17 years) soccer players during the same period when using HS RIO data.\(^{92}\) In basketball from 2005 to 2010, 68,359 concussions occurred nationally amongst 13- to 19-year-olds according to the NEISS, while 106,942 concussions occurred according to HS RIO.\(^{93}\)

84. American football, rugby, hockey, lacrosse, soccer, basketball, softball, wrestling, field hockey, track, taekwondo, volleyball and cheerleading.
85. Pfister et al., supra note 83, at 295.
86. Anthony P. Kontos et al., *Incidence of Sports-Related Concussion Among Youth Football Players Aged 8-12 Years*, 163 J. PEDIATRICS 717, 719 (2013). (the Kontos et al. study reported an incidence rate of 1.76 concussions per 1,000 AEs, contrasted with incidence rates of between 0.47 and 0.64 concussions per 1,000 AEs amongst high school athletes)
89. Pfister et al., supra note 83, at 295.
90. The three high school studies drew from national or regional surveillance system data reported by athletic trainers. However, the study of 8- to 12-year-olds had members of the research team present at games and regularly contacted coaches to determine more specific athlete exposure. Kontos et al., supra note 77, at 718.
92. Id.
93. Erica N. Fletcher et al., *Epidemiologic Comparison of Injured High School Basketball
Interestingly, there is less discrepancy when comparing collegiate data from the NCAA Injury Surveillance Program (NCAA-ISP) with NEISS data for individuals aged 18 to 22 years. The NCAA-ISS reported that approximately 8,445 concussions occurred during the time period; the NEISS reported that 5,865 concussions occurred. In all cases, the national estimate from emergency room data was significantly lower than the national estimate from designated injury surveillance systems despite emergency rooms capturing a greater swath of the population.

B. Average Concussion Incidence Rates

For the many reasons discussed above, it is difficult to ascertain a single, accurate estimate of concussion incidence. Nevertheless, researchers have used a variety of methods to examine the incidence of youth sports concussion. We review that research below.

Incidence rates as measured by all medically attended events and fatalities: Mersine Bryan and colleagues from the Seattle Sports Concussion Research Collaborative identified sports- and recreation-related concussions (SRRCs) in youth ages 18 and younger. The SRRCs were identified using the data from three national databases (MarketScan, NEISS, and HS RIO). From MarketScan data, which captures all SRRCs treated by health care providers, they estimated between 582,228 and 635,728 SRRCs. Using data from the NEISS, the researchers estimated a total of 115,479 SRRCs amongst all children aged 18 and younger visiting an emergency department. Finally, from the 2012-13 HS RIO, the authors estimated 335,342 SRRCs occurred annually amongst...
high school athletes in nine sports.\textsuperscript{102}

The authors also attempted to determine the number of SRRCs not seen in health care settings. Using previously reported values of concussion underreporting amongst youth athletes,\textsuperscript{103} the authors estimated a range of 511,590 to 1,240,972 SRRCs untreated by a health care provider amongst those 18 and younger.\textsuperscript{104} By using these values in conjunction with database data, the authors estimated a range of 511,590 to 1,240,972 SRRCs in those 18 and younger that went untreated by health care providers.\textsuperscript{105} Using their estimated values for both SRRCs that had received healthcare provider treatment and those that had not, the authors reported a total estimated incidence of between 1,093,818 to 1,876,700 SRRCs amongst those 18 and younger.\textsuperscript{106} Thus in 2013, the researchers calculated an incidence rate of between 14 and 24 sports- and recreation-related concussions per 1,000 children.\textsuperscript{107}

\textit{National Surveillance Systems.} From 1995 to 1997, there were an estimated 62,816 annual mild traumatic brain injuries (mTBI)\textsuperscript{108} due to participation in ten high school sports: the nine original HS RIO sports and girls’ field hockey.\textsuperscript{109} These mTBIs constituted only 5.5\% of time-loss injuries, those injuries leading to at least one day of missed participation from either practice or competition.\textsuperscript{110} By the 2005–06 academic year, an estimated 135,901 concussions occurred nationally during participation in the nine original HS RIO sports, representing 8.9\% of the reported time-loss .\textsuperscript{111} As of the 2015–16 academic year, an estimated 342,497 concussions occurred nationally, representing 24.6\% of reported time-loss injuries in the nine original HS RIO sports.\textsuperscript{112} In NATION,
the other major national surveillance system of high school athletes, concussions constituted a similar proportion, 24%, of time-loss injuries during the 2011-12 through 2013-14 academic years.\(^\text{113}\) Despite representing such a high percentage of time-loss injuries, concussions were only 4.3% of total injuries.\(^\text{114}\) In addition, concussions did not compose a large percentage of severe injuries. For all original HS RIO sports besides boys’ soccer, they represented less than 10% of severe injuries in the 2007–08 academic year.\(^\text{115}\)

National surveillance systems also provide sport-specific information regarding concussion incidence. Consistently, football has the greatest incidence, accounting for roughly 50% of all concussions, and highest incidence rate of concussions amongst high school sports.\(^\text{116}\) Other sports with consistently high incidence and incidence rates include wrestling, girls’ and boys’ soccer, girls’ and boys’ lacrosse, and boys’ ice hockey.\(^\text{117}\) Overall, boys’ sports have a higher incidence and incidence rate of concussions.\(^\text{118}\) However, in gender-comparable sports such as soccer, basketball, crew, cross-country, swimming/diving, tennis, and softball/baseball, girls have approximately 1.6\(^\text{119}\) to 2\(^\text{120}\) times the incidence rate of concussions as their male counterparts. There is no particular association between grade in school and concussion incidence, but varsity athletes sustain about half of all concussions.\(^\text{121}\)

Regional Surveillance Systems. In addition to the national systems, some states and school districts administer their own injury and concussion surveillance systems. The Fairfax County Injury Database was one such surveillance system. From the 1997-98 academic year through 2007-08, it captured freshman, junior varsity and varsity teams across 12 sports at 25 large


\(^{114}\) Id. at 86; id. at 177.

\(^{115}\) Cory J. Darrow et al., Epidemiology of Severe Injuries Among United States High School Athletes, 37 AM. J. SPORTS MED. 1798, 1802 (2009). Severe injuries are those leading to more than 21 days lost from sports participation. Id. at 1799.

\(^{116}\) See, e.g., Mallika Marar et al., Epidemiology of Concussions Among United States High School Athletes in 20 Sports, 40 AM. J. SPORTS MED. 747, 749 (2012) (finding 47.1% of concussions resulted from participation in football); Castile et al., supra note 69, at 605 (48.5%); William P. Meehan III et al., High School Concussions in the 2008-2009 Academic Year: Mechanism, Symptoms, and Management, 38 AM. J. SPORTS MED. 2405, 2406–07 (2010) (56.8%); O’Connor et al., supra note 112, at 177 (53.6%). However, overtime, the proportion of concussions/mild traumatic brain injury due to football have dropped, from about 63% in 1995-1997. See Powell & Barber-Foss, supra note 108, at 960.

\(^{117}\) See O’Connor et al., supra note 116, at 179, 181.

\(^{118}\) Lincoln et al., supra note 61, at 959.

\(^{119}\) O’Connor et al., supra note 116, at 175.

\(^{120}\) Marar et al., supra note 116, at 747; Lincoln et al., supra note 61, at 960.

\(^{121}\) Meehan et al., supra note 116, at 2406
Virginia public high schools. During the 2005-06 academic year, the school system’s policy was changed to require one full-time and one part-time athletic trainer at all high schools. Concussion rates in the database increased 4.2 fold from the 1997-98 to the 2007-08 academic year, from approximately 0.1 concussions per 1,000 AEs to about 0.5 concussions per 1,000 AEs. In fact, there was an average increase in concussion incidence rate of 16.5% every year. The sharpest increase occurred around 2005-06 when the policy change regarding athletic trainers was enacted.

By sport, football was highest in incidence and incidence rate over the study period – about half of all concussions were due to football, and football players sustained 0.6 concussions per 1,000 AEs. Girls’ soccer had the second highest incidence rate (0.35 concussions per 1,000 AEs), followed by boys’ lacrosse (0.3 concussions per 1,000 AEs) and girls’ lacrosse (0.2 concussions per 1,000 AEs).

In addition, we can use these sub-national systems to examine variation by region. For example, Washington State led the charge in enacting policy change to combat youth sports concussion with the passage of the Lystedt Law in 2009. In summary, the statute requires concussion education for coaches, players and parents; immediate removal from play following a suspected concussion; and medical clearance prior to returning to play. Even after the passage of the law, and a subsequent doubled incidence rate, the incidence rate in Seattle public schools was just 0.359 reported concussions per 1,000 AEs in 2010-11. By contrast, Fairfax County reported approximately 0.5 concussions per 1,000 AEs in 2007-08.

Studies Beyond the National Surveillance System. Currently, there are no national injury surveillance systems of youth (younger than high school) sports similar to the HS.RIO or NATION. However, there have been several studies that use certified athletic trainers or other medical professionals to determine concussion incidence within specific states, leagues or sports.

122. See, e.g., Lincoln et al., supra note 118, at 958, 959.
123. Id. at 959.
124. Id. at 960.
125. Id. at 962.
126. Id.
127. Id. at 960.
128. Id.
130. § 28A.600.190, (2)-(4).
132. Lincoln et al., supra note 61118, at 960.
133. There is one national youth football surveillance system (Youth Football Safety Study).
In the United States, the bulk of concussion incidence research has been performed on collision or contact sports. There are mixed results regarding the comparative incidence between youth (i.e., those 14 and younger) and high school athletes. As of 2012-14, there are similar incidence rates of concussion between high school and youth football in both games (2.13 per 1,000 AEs for youth and 1.61 per 1,000 AEs for high school) and practices (0.53 per 1,000 AEs for youth and 0.47 per 1,000 AEs for high school). However, the risk of a youth football athlete sustaining a concussion is lower per season than a high school football athlete sustaining a concussion— in 2012 and 2013, the risks for youth were 3.53% for games and 3.13% for practices, while the risks for high schoolers were 9.98% for games and 4.5% for practices.

Sport-Specific Incidence and Incidence Rates

Football. Kerr and colleagues investigated the incidence and outcome of concussions in youth and high school football during the 2012 through 2014 seasons. The authors used data from the Youth Football Surveillance System (YFSS), a surveillance system for youth football players aged 5 to 14 years. The YFSS included a total of 118 teams in 6 states (Arizona, Indiana, Massachusetts, Ohio, South Carolina, and West Virginia). Concussions were defined and reported according to the discretion of individual athletic trainers present at all practices and games. Over the course of the study’s three football seasons, there were 95 youth game concussions, giving an incidence rate of 2.13 per 1,000 AEs, and 87 youth practice concussions, an incidence rate of 0.53 per 1,000 AEs. One key limitation described by the study authors was that athletic trainers lacked familiarity with the youth population, who may have presented different types of symptoms or had poorer understanding of concussions than the athletes’ older counterparts.

From 2012 through 2013, Kerr and colleagues also evaluated how league rules affect injury rates in 5- to 14 year-old recreational football players, comparing leagues with age-only criteria for inclusion and leagues with age and

---

134. Kerr et al., supra note 38, at 649.
136. Kerr et al., supra note 38, at 647.
137. Id. at 649.
138. Id. at 647.
139. Id. at 661. Although no explicit definition was provided, athletic trainers were encouraged to use their state or local guidelines or the definition from the 4th Consensus Statement on Concussion in Sport. See Paul McCrory et al., Consensus Statement on Concussion in Sport: The 4th International Conference on Concussion in Sport held in Zurich, November 2012, 47 BRT. J. SPORTS MED. 250, 250 (2013).
140. Kerr et al., supra note 38, at 649.
141. Id. at 651.
weight-criteria for inclusion. Using comparable methodology to the YFSS, they collected data from 3,167 (97.9%) players from 210 teams across 13 leagues in 6 states (Arizona, Indiana, Massachusetts, Ohio, South Carolina, and West Virginia). In total, there were 141 concussions across the study—62 in age-weight leagues and 79 in age-only leagues. Concussions were the third most common injury, representing 9.6% of the 1,475 total injuries. Across both types of leagues, the concussion incidence rate was 1.0 per 1,000 athlete exposures, with 0.8 concussions per 1,000 AEs amongst age-weight and 1.2 concussions per 1,000 AEs amongst age-only leagues. Across both leagues, games had an incidence rate of 2.4 concussions per 1,000 AEs and practices had an incidence rate of 0.6 concussions per 1,000 AEs.

During the 2013 recreational football season, researchers at the University of Pittsburgh Medical Center Sports Medicine Concussion Program investigated the incidence of concussions in 8- to 12-year-old football players. They performed a prospective, observational study on 468 of 571 (82%) youth players from 18 tackle football teams in western Pennsylvania. The authors administered concussion education material to coaches, players and parents; trained team reporters track athlete exposure; and required medical diagnosis of included concussions. During the season, they recorded 20 concussions (90% of which were sustained in games), for an overall incidence rate of 1.76 concussions per 1,000 AEs. However, this rate varied significantly based on age – older players (11-12 years old) had about 2.5 times the rate of concussions as younger players (8-10 years old).

Prospective or surveillance studies evaluating youth concussion incidence are limited. Michael Stuart and colleagues from the Mayo Clinic examined injury incidence in youth football players over the course of 1 season in fall of 1997. Over the course of the season, 55 injuries occurred, all diagnosed by an on-field orthopedic surgeon. They included all concussion, dental, eye and nerve

142. Kerr et al., supra note 62 at 1.
143. Id. at 2.
144. Id. at 4.
145. Id.
146. Id. at 5.
147. Id.
148. Kontos et al., supra note 77, at 717.
149. Id. at 718.
150. Id.
151. Id. at 718–19.
152. Id. at 719 (11- to 12-year-olds had 2.53 concussions per 1,000 AEs while 8- to 10-year-olds reported 0.93 concussions per 1,000 AEs).
154. Id. at 318. In order for an injury to count for the study, it had to occur during the game, lead to suspension of play, and require physical attention. Id. at 317
injuries. Of these, 1 was a concussion (2% of total injuries). These injuries occurred across 915 observed children aged 9 to 13 years competing on 42 teams in the Rochester, Minnesota area. No concussion incidence rate was reported.

**Soccer**: John O’Kane and colleagues evaluated concussions in girls’ youth soccer in the Puget Sound region of Washington State. The study followed a total of 351 soccer players from 33 teams between the 2008-09 and 2011-12 seasons. To calculate concussion incidence, the study used an online surveillance system that relied on parental reporting. Parents reported blows to their child’s head incurred during soccer, as well as weekly practice exposure. A concussion was defined as any blow to the head leading to symptoms consistent with concussion, and the symptoms were clarified via a phone interview with the athlete within a week of reporting the injury. Interviews and case details were reviewed weekly by the research team.

In total there were 59 concussions: 43 players reported one concussion and eight players reported two concussions. Per season, there was a 13% incidence of concussion, and an incidence rate of 1.3 concussions per 1,000 AEs. There was no statistically significant difference between age groups or by level of play. Rates were significantly higher in competition than practice; the concussion incidence rate in games was 22.9 times greater than in practices.

**Ice Hockey**: Anthony Kontos and colleagues followed a prospective cohort of 401 competition-level youth ice hockey players aged 12 to 18 years during two seasons between September 2012 and April 2014. In total, 37 concussions were reported, with an incidence rate of 1.58 concussions per 1,000 AEs.

---

155. Id. at 317.
156. Id. at 318.
157. Id. at 317.
158. O’Kane et al., supra note 103, at 258.
159. Id. at 259.
160. Id. at 262.
161. Id. at 259 (these symptoms included “memory loss, difficulty concentrating, confusion or disorientation, dizziness, drowsiness, headache, more emotional than usual, irritability, losing consciousness, nausea, ringing in the ears, sensitivity to light or blurry vision, and sensitivity to noise”).
162. Id.
163. Id. at 260–61.
164. Id. at 261.
165. Id.
166. Id.
167. Anthony P. Kontos et al., *Incidence of Concussion in Youth Ice Hockey Players*, 137 PEDIATRICS, Jan. 2016, at 2. Out of the 401 participants, 397 reported demographic information. Participants were mostly boys (83.1%), grouped into 12- to 14-year-olds (40.1%) and 15- to 18-year-olds (59.9%). Id. at 3. Amongst these, 26.5% had sustained a prior concussion; 18.6% had 1 prior concussion, 6.3% had 2 prior concussions, 0.8% had 3 prior concussions, and 0.8% had 4 prior concussions. Id.
168. Id. at 1.
Players were taken from multiple levels and locations, including three states (Pennsylvania, Massachusetts, and Alabama) and 31 teams (11 high school, 10 midget, 7 bantam, 3 peewee). There were four girls’ teams included; they and the three peewee teams did not allow checking. Participant exclusion criteria included history of brain surgery, moderate or severe TBI, neurologic/psychiatric disorder, and current or recent (previous 6 months) concussion. A medical professional, present at all games and practices, officially diagnosed all included concussions.

During the two seasons of the study, there were 11 practice concussions and 26 game concussions, with no multiple concussions. The incidence rate was 2.86 times higher for games than practices. In 14 of the concussions, the player already had a prior concussion: nine concussed players had one prior concussion and five concussed players had two or more prior concussions. Younger players (aged 12-14 years) had a 2.4 times higher incidence rate than older players (aged 15-18 years), with 2.84 concussions per 1,000 AEs compared to 1.18 concussions per 1,000 AEs in older players.

Incidence rates as measured by non-certified team reporter: Attempts to determine concussion and injury rates in middle-school-aged children and younger have proven difficult, but trend towards lower rates amongst younger individuals. In a sample of 7- to 13-year-olds on community sports teams there was a low incidence of concussion; only 2 officially diagnosed concussions were reported across 1,659 children during a season. In addition, under-9-year-old soccer teams suffered less concussions per season than under-11-year-old soccer teams and under-13-year-old soccer teams.

Radelet and colleagues evaluated the baseline injury rate in community-organized sports for male and female youths aged 7 to 13. During the 1999 to 2000 season, they tracked injuries across 1,659 children on 125 community-
organized baseball, softball, football, and soccer teams in the Pittsburgh area.\textsuperscript{181} Across all sports, there were 383 reported injuries\textsuperscript{182} during 2,092 combined practices and games.\textsuperscript{183} Only two officially diagnosed concussions were reported—one in baseball and one in football.\textsuperscript{184} However, the results of this study are constrained by poor reporting. There was only a 35\% return rate of the form specifying injury type; the authors raised doubts about significant underreporting.\textsuperscript{185} There were often discrepancies between direct researcher observation and the information on the returned forms.\textsuperscript{186}

Outside of the United States, there have also been efforts to determine sports-related concussion incidence in youth sports. During the 2012 through 2015 seasons, Oliver Faude and colleagues prospectively investigated the incidence of concussion and other injuries in youth soccer.\textsuperscript{187} The sample included primarily male, under-9, under-11, and under-13 soccer teams in the Czech Republic, Germany, Switzerland and the Netherlands.\textsuperscript{188} Although the contact person (usually a coach) received detailed instructions regarding reporting and injury information, no explicit definition of a concussion was given.\textsuperscript{189} In many cases, only a coach and/or parent diagnosed the concussion.\textsuperscript{190} During the study, there were a total of 11 documented concussions: under-9 players suffered zero concussions, under-11 players suffered five concussions, and under-13 players suffered six concussions.\textsuperscript{191} This included one re-injury.\textsuperscript{192} Overall incidence was low, at 0.02 concussions per 1,000 hours of exposure.\textsuperscript{193}

In New South Wales, a research team investigated the incidence of injuries in male rugby union football players, including under-13, under-15, under-18 and under-20 teams, over two years.\textsuperscript{194} They reported 199 concussions and overall incidence rates of 6.9 game injury concussions per 1,000 player hours and 1.9 missed game injury concussions per 1,000 player hours.\textsuperscript{195} Under-13 teams had the lowest rates of both game and missed game injuries, and these

\begin{thebibliography}{99}
\bibitem{181} Id. at 2, 5 tbl.1.
\bibitem{182} Id. at 6 tbl.2
\bibitem{183} Id. at 5 tbl.1.
\bibitem{184} Id. at 5–6.
\bibitem{185} Id. at 10.
\bibitem{186} Id.
\bibitem{187} Faude et al., supra note 178, at 1986–87.
\bibitem{188} Id. at 1987, 1991.
\bibitem{189} Id. at 1988.
\bibitem{190} Id. at 1991.
\bibitem{191} Id. at 1988 tbl.1.
\bibitem{192} Id.
\bibitem{193} Id.
\bibitem{194} A.S. McIntosh et al., \textit{Head, Face and Neck Injury in Youth Rugby: Incidence and Risk Factors}, 44 BRIT. J. SPORTS MED. 188, 188–89 (2010).
\bibitem{195} Id. at 189.
\end{thebibliography}
rates increased through each subsequent age group. However, in terms of concussions, rates actually peaked in the under-18 age group. There did not seem to be a definite trend amongst the other age groups, and the under-13s did not necessarily have the lowest rate of concussions.

Athlete Self-Report. Historically, self-report has been the primary method of gauging concussion incidence, primarily in football players. How to interpret this data is unclear; given the poorly defined nature of concussion and the fact that concussion may lead to long-term impaired neurological function, self-report may not always be accurate. A 2016 survey found that 19.5% of all high school students reported sustaining a concussion during their lifetime, and a full one-third of contact sport athletes reported sustaining at least one concussion during their lifetime.

In 1977, approximately 19% of high school football players self-reported sustaining concussions during the previous athletic season. During the 1995–2002 period, between 15.3% and 47.2% of high school football players self-reported concussion. From 2008 through 2010, 26.3% of high school athletes reported sustaining concussions during their high school career. In 2013, 16.6% of respondents reported sustaining a concussion during the previous season.

In another self-report study, Sarah Strand and colleagues evaluated the risk of concussion in girl soccer players aged 11 to 13 years. They compared the number of self-reported probable concussions sustained in the previous season by 195 organized soccer players with those sustained by 147 control group of non-soccer playing female youths, all from major metropolitan areas in the United States. The authors asked participants about blows to the head leading to signs or symptoms of concussions, followed up with a phone interview. Amongst the soccer group, 48% reported sustaining a probable concussion. By contrast,

196. Id. at 190.
197. Id. at 191 tbl.2.
198. Id.
203. Ashley A. LaRoche et al., Sport-Related Concussion Reporting and State Legislative Effects, 26 CLINICAL J. SPORT MED.: OFFICIAL J. CAN. ACAD. SPORT MED. 33 (2016).
204. Sarah Strand et al., Relative Risk for Concussions in Young Female Soccer Players, 4 APPLIED NEUROPSYCHOL.: CHILD 58, 60 (2015).
only 23% of the control group had sustained a probable concussion, indicating about twice the risk for concussion in the soccer group.208

C. Variation in Incidence Rates Across Sports

Assessing concussion risk involves sport-to-sport comparisons. Across the past decade, a cluster of collision and contact sports have emerged as high risk for incidence of concussion. Football is consistently in the lead in terms of both incidence and incidence rate, across studies and years, with rates nearly doubling from 0.47209 to 0.92210 per 1,000 AEs between 2005-06 and 2012-13. During the past decade, girls’ soccer, girls’ and boys’ lacrosse, boys’ ice hockey and boys’ wrestling have also had high incidence rates.211 Following football, the three sports with the highest incidence rates amongst the nine original sports captured by the HS RIO (during 2011-12) were girls’ soccer, with a rate of 0.73 concussions per 1,000 AEs; boys’ soccer, with a rate of 0.41 concussions per 1,000 AEs; and boys’ wrestling, with a rate of 0.57 concussions per 1,000 AEs.212 Following football, the highest three incidence rates from the expanded HS RIO (in 2008-10) were ice hockey with 0.54 concussions per 1,000 AEs; boys’ lacrosse with 0.40 concussions per 1,000 AEs; and girls’ lacrosse with 0.35 concussion per 1,000 AEs.213 Girls’ soccer followed just behind girls’ lacrosse with 0.34 concussions per 1,000 AEs.214 Finally, the three sports following football in incidence rate from 2011-12 through 2013-14 were boys’ lacrosse with 0.67 per 1,000 AEs, girls’ soccer with 0.61 concussions per 1,000 AEs, and wrestling with 0.58 per 1,000 AEs.215

A study in the emergency room investigating organized team sports for 8 to 13-year-olds found that football had the highest risk of ED visit for concussion, followed by basketball, baseball, soccer and ice hockey.216 Amongst 7 to 11-year-olds and 12 to 17-year-olds, the highest incidence rates were for ice hockey (0.10 per 1,000 participants and 0.29 per 1,000 participants respectively), football (0.08 per 1,000 participants and 0.27 per 1,000 participants), and soccer (0.01 per 1,000 participants and 0.03 per 1,000 participants respectively).

208. Id.
209. Gessel et al., supra note 87, at 497 tbl. 1.
212. Rosenthal et al., supra note 211, at 1711 tbl. 1.
214. Id.
216. Lisa L. Bakhos et al., Emergency Department Visits for Concussion in Young Child Athletes, 126 PEDIATRICS e550, e553 tbl. 2 (2010).
According to the CDC, amongst 5 to 18-year-olds in team sports, football contributes the most sports-related TBI, followed by basketball, soccer, baseball, and hockey. Similar findings were reported in a study of emergency room visits due to pediatric sports-related concussion in pre-high school and high school aged athletes.

From 2001 to 2005, within sports-related concussions in the emergency department, 38% were sustained due to organized team sports. Although organized team sports were responsible for only a quarter of pre-high school SRC, they constituted nearly half of high school-aged SRC. Breaking this down by sport, 8 to 13-year-olds had the highest risk of ED visit for concussion in football, followed by basketball, baseball, soccer and ice hockey. In 14 to 19-year-olds, football exhibited the highest incidence of concussion, followed by soccer, basketball, and baseball.

D. Concussion Incidence Has Risen Over Past 15 Years

Across studies and methodologies, researchers have found increases in traumatic brain injury incidence over time, including sports-related concussion. The High School RIO data found that between 2005-06 and 2011-12, the concussion incidence rate approximately doubled. Over the past 15 years, it appears that concussions have also increased in prevalence amongst younger athletes, although the lack of a long-running, national surveillance system makes it difficult to fully support conclusions for these cohorts.

One study using NEISS data reported a 1,595% increase in the incidence rate of concussions and other head injuries from 1990 to 2014. In another study drawing from the same databank, researchers calculated incidence rates for 4 to 13-year-old athletes from 2002 through 2012 in nine sports (basketball, baseball, football, gymnastics, hockey, lacrosse, soccer, softball, and wrestling). Concussion cases in football and gymnastics increased by approximately six-
fold; baseball and softball by approximately three-fold; wrestling by approximately four-fold; soccer and hockey by approximately five and a half-fold; basketball by two-thirds-fold; and lacrosse by thirty-fold.228 By 2012, about 11,000 football concussions occurred in athletes aged 5 to 13-years-old.229

Scholars have observed similar trends in emergency room concussion incidence amongst pre-high school and high school individuals.230 From 2001 to 2005, approximately 253,000 sports-related concussions (~50% of total concussions) occurred in children aged 8 to 19 year old, of which 40% were sustained by 8 to 13-year-olds.231 Despite decreases in participation rates during the study period, 8 to 13-year-olds experienced increased concussion incidence.232

Other research has reported similar increases in sports-related TBI emergency department visits between 2006 and 2011.233 The greatest increases in incidence occurred in middle school aged children (94.9%) and children under 12-years-old (71.7%).234 Another found that the rate of concussions in organized team sports has increased over time in both 8 to 13-year-olds and 14 to 19-year-olds; however, 14 to 19-year-olds have experienced a much more drastic increase in organized team sports related concussions.235

E. Increase in Reported Concussions Most Likely Due to Changes in Reporting Practice

Does the increase in the number of reported youth sports concussions mean that these sports are getting more dangerous, or simply that we are simply better at identifying injuries that previously would have been unreported? There is good reason to think that the uptick in incidence is the result of better monitoring and reporting.

Two self-report studies, published about a decade apart, provide a clear demonstration of how changes in concussion reporting may drive the rising

228. Id. at 6, tbl. 10
229. Nathan A. Jacobson et al., Concussions from Youth Football: Results from NEISS Hospitals over an 11-year Time Frame, 2002-2012, 1 ORTHOPAEDIC J. SPORTS MED 7, 3 Fig. 1 (2013).
231. Id. at 552, fig. 1.
232. Id. at 554. Within these sports-related concussions, a quarter of pre-high school SRC were due to organized team sports (e.g. football, basketball, baseball, ice hockey and soccer). Thus, nationally between 2001 and 2005, an estimated 4 in 1,000 8 to 13-year-olds sustained an ED-treated sports-related concussion (denominator from U.S. Census population estimate).
233. Id. at 551 (cases with a primary diagnosis of TBI were included, identified using the CDC recommended International Classification of Diseases, 9th Edition (ICD-9) codes of 800.0-801.9, 803.0-804.9, 850.0-854.18; specified sports-related with E-codes of 917.0 and 917.5).
234. Id.
235. Bakhos et al., supra note 230 at 554.
incidence rates. From 1997 to 2002, neuropsychologist and current head of the American Academy of Clinical Neuropsychology Michael McCrea and a research team investigated the frequency of unreported concussions in high school football players. They used a survey that included a specific description of a concussion. Using self-report data from Milwaukee, Wisconsin area high schools, the study found that only 47.3% of male varsity football players who sustained a concussion actually reported it.

A 2016 modified replication of the McCrea et al. study evaluated how the Wisconsin high school sports-related concussion law affected concussion incidence rates. Although distributed to athletes from six sports across high school and college in Wisconsin, most respondents were football players, so the authors specifically compared the 2013 high school football players with the original sample. Similar proportions of high school football players in 2013 and 1997-2002 reported a prior concussion (31.1% versus 29.9% respectively) and a concussion in the previous season (16.6% versus 15.3% respectively). However, during 2013, there was significantly better reporting than in 1999-2002 – 70.6% of high school football players self-reporting a concussion in 2013 also reported that concussion to another individual, versus only 47.3% in 1999-2002. A study of collegiate athletes also supported this trend: 54% of those who began college prior to 2001 reported failing to disclose a concussion, while only 17% of those beginning college in 2001 and after reported failing to disclose a concussion.

Of course, reporting practices may not be improved across all sports or regions in the United States. To illustrate, consider a study of concussion knowledge and reporting behavior in high school athletes. From 2008 to 2010, the researchers administered a self-report survey to 1,669 varsity athletes at 28 high schools in nine states, and received 167 fully complete surveys. They were specifically probed about concussion and “bell ringer” events they recalled during high school competitions and practices, whether or not they reported those events, and knowledge of symptoms of concussion. In total, 44 athletes

---

236. McCrea et al., supra note 103.
237. Id. at 14 (“A concussion is a blow to the head followed by a variety of symptoms that may include any of the following: headache, dizziness, loss of balance, blurred vision, ‘seeing stars,’ feeling in a fog or slowed down, memory problems, poor concentration, nausea, or throwing up. Getting ‘knocked out’ or being unconscious does not always occur with a concussion.”).
238. Id. at 14-15.
239. LaRoche et al., supra note 204.
240. Id. at 37.
241. Id.
243. Register-Mihalik et al., supra note 203.
244. University of Pittsburgh Medical Center, ‘Bell Ringers’ Or ‘Dings’ in Young Athletes Are Serious Events That Require Removal From the Game, SCIENCE NEWS (Jan. 21, 2004), https://www.sciencedaily.com/releases/2004/01/040121082919.htm. A bell ringer event is a Grade
(26.3%) reported at least one previous concussion event during their high school career and 81 athletes (48.5%) reported a history of at least one previous bell ringer/ding event during their high school career.245 There were 84 self-reported concussions, of which 48.8% were reported to a trainer or coach; by contrast, only 12.3% of bell-ringer events were reported.246 In addition, almost 40% of athletes reported continuing participation while symptomatic.247 These numbers for failure to report are more similar to 1997-2002 than to 2013.248

F. Most Concussion Symptoms Resolve Within Three Weeks

Concussions are scary. But as UCLA neurologist and concussion specialist Chris Giza reminds us, although brain injury may be common, “Mother Nature designed us, for the most part, to recover from these kinds of injuries.”249 Data from a number of studies confirms this observation. Studies using emergency department data found that 96.5% cases were mild, and only 3.7% of all sports-related TBI cases led to hospital admission.250 In addition, although concussions represent more than 20% of specific injuries reported to public high school athletic trainers, the rate of concussions with long-lasting symptoms remains low.251 From the NCAA ISS, there is an incidence rate of about 0.058 severe concussions per 1,000 athlete encounters.252 In addition, mild traumatic brain injury due to sports or recreation is rarely fatal.253

Symptoms such as headache, dizziness and nausea are common.254 Amongst both male and female athletes in high school athletes the most common symptoms are headache (94.2255 – 94.7%), followed by dizziness (74.8256).
75.6\%^{258}, difficulty concentrating (54.8\%^{259} – 61\%^{260}), and light sensitivity (36\%^{261} – 46.6\%^{262}). However, more severe symptoms of concussion, such as amnesia and loss of consciousness, are rare; amnesia (either post-traumatic or retrograde) occurs in 24.3\% of cases^{263} and loss of consciousness occurs in less than 5\% of cases (4.6\%).^{264} In addition, symptoms dissipate within seven days in most (90\%) of cases.^{265}

Of course, just as there are differences in incidence across methods, there are also differences in symptom resolution time. From NATION, symptom resolution was usually reported within 7 days (40.5\%) or between 8 and 14 days (21.7\%).^{266} From the HS RIO, 27\% resolved within 24 hours and 20.2\% of cases resolved within one week.^{267} In addition, about 13\% of concussed athletes from NATION took more than 28 days for full symptom resolution,^{268} while only about 1.5\% of concussed athletes from HS RIO took more than a month to resolve.^{269}

G. Previous Concussions Increase Risk

In schools sampled by the HS RIO, 13.2\% of recorded concussions were recurrent (i.e. the athlete had already sustained at least one concussion).^{270} Recurrent and new concussions follow similar trends; football had the highest rates of both types, along with by girls’ field hockey, boys’ and girls’ lacrosse, and boys’ and girls’ soccer.^{271} Having a prior concussion is a strong risk factor for future concussions. According to a nationally representative study of high school football players in 1997-99, those with prior concussions had 6.6 times the risk for sustaining a concussion during the study period.^{272}

Elizabeth Teel of the Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center and her colleagues also found elevated risk of concussion amongst athlete with prior concussions, particularly a history of multiple concussions.^{273} Athletes with one

258. Marar et al., supra note 116, at 3.
259. Id.
260. O’Connor et al., supra note 116, at 179.
261. Marar et al., supra note 116, at 3.
262. O’Connor et al., supra note 116, at 179.
263. Meehan III et al., supra note 116, at 2406.
264. Id.
265. McCrea et al., Incidence, Clinical Course, and Predictors of Prolonged Recovery Time Following Sport-Related Concussion in High School and College Athletes, 19 J. INT’L NEUROPSYCHOLOGICAL SOC’Y 22, 23 (2013)
266. O’Connor et al., supra note 116, at 180.
267. Meehan III et al., supra note 116 at 2406.
268. O’Connor et al., supra note 116 at 180.
269. Meehan III et al., supra note 116, at 2406.
270. Castile et al., supra note 69, at 603. A different study listed the number of recurrent concussions at 2.9\%. O’Connor et al., supra note 116, at 179.
271. Id.
272. Zemper, supra note 76, at 657.
273. Elizabeth F. Teel et al., Predicting Recovery Patterns After Sport-Related Concussion
previous concussion were 2.2 times as likely, and those with two or more previous concussions were 4.2 times as likely, to sustain a subsequent concussion.\textsuperscript{274}

Across all 20 sports captured in the expanded HS RIO, 11.5\% of high school athletes who sustained a concussion had already sustained a sports-related concussion.\textsuperscript{275} In addition, in Fairfax County, almost 20\% of recurrent concussions occurred within 31 days of a previous concussion.\textsuperscript{276} However, in contrast to the results of the HS RIO, NATION reported recurrent concussions as representing only 2.9\% of total concussions.\textsuperscript{277}

More severe symptoms and extended resolution time appear slightly more common in recurrent concussion. Recurrent concussions also led to longer symptom resolution time; while less than 0.6\% of new concussions took more than a month to resolve, 6.5\% of recurrent concussion symptoms took more than a month to resolve.\textsuperscript{278} In addition, 13\% of recurrent injuries leading to discontinuation were concussions,\textsuperscript{279} and 16.2\% of recurrent concussions lead to medical disqualification.\textsuperscript{280}

For example, loss of consciousness occurred in 7.7\% of recurrent cases versus 4.4\% of new cases in high school athletes.\textsuperscript{281} Eleven percent of high school and collegiate football players with a history of concussion in the past year experienced loss of consciousness with a new concussion, versus 8\% of those without prior concussions.\textsuperscript{282} From the same study, 31\% with concussions during the previous year experienced amnesia following a new concussion, versus 26\% of players without that history.\textsuperscript{283} Amongst another sample of high school athletes, 25.9\% of athletes with three or more previous concussions lost consciousness following a new concussion compared with 5\% of athletes without prior concussions.\textsuperscript{284} Athletes with a history of concussion were also more likely to experience retrograde or anterograde amnesia.\textsuperscript{285} In addition, 7.5\% of players with a recurrent concussion took more than three weeks to return to play versus 3.8\% of athletes with no prior concussions.\textsuperscript{286}
H. Symptom Recovery and Concussion Risk – An Increased Problem in Youth Athletes?

Commentators on concussions sometimes suggest that younger athletes take longer to recover than older athletes. But it remains unclear whether the neurobiology of concussion is such that younger ages are more vulnerable. Our review indicates that the reported symptoms are highly similar between younger and older adolescent athletes, with the majority reporting headaches and few reporting loss of consciousness.

A recent review reported “that age may play a role in concussion risk; however, contrasting findings confer a low level of certainty for concussion risk.” For instance, from the NEISS data, players aged 12 to 17-years-old had a higher proportion of concussion or head injury than the younger age group (7.9% of total injuries versus 5.5%). In addition, emergency room data shows a lower population-based TBI incidence rate amongst those under 12-years-old, in contrast to 12 to 18-year-olds. However, from observational studies, 11 to 12-year-old youth hockey players suffered concussions at a higher rate than both high school and older club players. By contrast, in football, one study reported similar incidence rates across 5 to 14-year-olds, high school and even collegiate players.

I. Female Athletes Experience Higher Concussion Incidence Rate

A consistent finding across time and surveillance systems is the existence of gender differences in concussion incidence rates in gender-comparable

---

288. Daniel W. Shrey et al., The Pathophysiology of Concussions in Youth, 22 PHYS. MED. REHAB. CLINICS N. AM. 577 (2011); Meeryo C. Choe et al., A Pediatric Perspective on Concussion Pathophysiology, 24 CURRENT OP. PEDIATRICS. 689, 690 (2012) (“The developing brain responds differently to concussion than the mature brain, and should be managed more conservatively.”).
289. Roger Zemek et al., Clinical Risk Score for Persistent Postconcussion Symptoms Among Children with Acute Concussion in the ED, 315 JAMA 1014 (2016) (finding that older youth may have longer-lasting symptoms).
290. Strand et al., supra note 205, at 61.
291. Haring et al., supra note 247, at 992 (While under-12-year-olds suffer 0.346 TBI per 1,000 population, 12 to 18-year-olds suffer ~2.37 per 1,000 population).
292. Emmery et al., supra note 293.
In gender-comparable high school sports (i.e. soccer, basketball, softball/baseball, track and field, and swim and dive), the reported incidence and incidence rate was higher for girls than for boys. Across these sports, they sustained concussions at between 1.56 and two-times the incidence rate of their male counterparts. This may be age-linked; from the NEISS emergency room data, boys aged 7 to 11 years old had a slightly higher of concussions and head injuries than girls (6.2% versus 4.5%). However, concussions represented comparable proportions of injuries amongst girls aged 12 to 17-years-old than boys (7.3% vs 8.7% respectively). There are several possible reasons for this difference, including cultural (such as differences in coach-athlete relationship and differences in reporting) and biological (such as neuroanatomical differences and poorer neck strength in female athletes).

Studies indicate that female and male athletes both underreport concussions. However, male athletes may be twice as likely to not report a concussion compared to female athletes. In addition, non-concussed female athletes reported more symptoms than non-concussed males. The current state of the literature indicates there are sex differences in sports-related concussion outcomes, possibly due to biological differences. A 2017 review demonstrated that a greater proportion of female athletes remain symptomatic at 28 days and 60 days post-concussion compared to male athletes, with average recovery times


297. Castile et al., supra note 69, at 609; O’Connor et al., supra note 115, at 178, 181-82. For example, although boys’ lacrosse and girls’ lacrosse are called the same name, boys’ lacrosse allows the use of checking (intentional physical contact) while girls’ lacrosse does not. By contrast, gender-comparable sports like soccer, swimming/diving and softball/baseball have similar rules governing the amount of allowed physical contact, which is likely to impact concussion risk.

298. O’Connor et al., supra note 116, at 175-78.

299. Castile et al., supra note 69; Marar et al., supra note 116; Lincoln et al., supra note 118.

300. Id.

301. Id.

302. Covassin et al., supra note 295, at 3-4.

303. Register-Mihalik et al., supra note 203, at 646.

304. Covassin et al., supra note 295, at 3 (2017). For further discussion, see Theresa L. Miyashita et al., Gender Differences in Concussion Reporting Among High School Athletes, 8 SPORTS HEALTH 359, 359-63 (2016); Dana A. Brown et al., Differences in Symptom Reporting Between Males and Females at Baseline and After a Sports-Related Concussion: A Systematic Review and Meta-analysis, 45 SPORTS MED. 1027, 1027-40 (2015).

of 75 days for female athletes and 49 days for male athletes. They also reported that male and female athletes did differ in reported symptoms. In addition, female athletes may experience greater rates of cognitive impairment compared to male athletes, although findings across studies have been mixed.

J. Return to Play on Same Day Has Fallen Dramatically Over Past 15 Years

There have been significant changes in return to play protocols since 1995-97, when the median return to play time from mTBI was three days and more than 80% of cases returned to play within a week. In the mid-1990’s, 68% of football players reported they did not even stop play following a concussive incident. By contrast, although there were differences in patterns of return to play between NATION and HS RIO, both have significantly longer return-to-play periods. Since 2008-09, return to play within 24 hours of a concussion event has been uncommon, occurring in less than 2% of athletes. In addition, only 10.5% of concussed athletes in the 2011-14 NATION sample returned to play in less than seven days, while about 21% of the HS RIO sample did. Both results are also markedly different from 2005-06; from the HS RIO, about half of athletes returned to play within nine days.

However, this increase in return-to-play time may not hold true for all age groups. Although less than 1% of concussed high school football players returned to play within 24 hours between 2012 and 2014, 10% of youth football players (aged 5 to 14-years-old) suffering concussions returned to play within 24 hours. Thus, it seems that the youngest (and potentially most vulnerable) athletes may be more likely to return to play the same day.

IV. DISCUSSION

In this Part we discuss the implications of the research just reviewed. We begin with suggestions for more research on: concussion measurement tools; the

307. Id. at 2 (males are more likely to report amnesia and confusion/disorientation, while females are more likely to report drowsiness, sensitivity to light and symptoms from the somatic, migraine-cognitive fatigue and emotional clusters).
308. Id.
310. Langburt et al., supra note 202, at 83-85.
311. O’Connor et al., supra note 112, at 178.
312. Id.
313. William P. Meehan III et al., Assessment and Management of Sport-Related Concussions in United States High Schools, 39 AM. J. SPORTS MED., 2304, 2304-2310 (2011) at 2308
314. Gessel et al., supra note 87, at 497.
316. For further discussion see supra, Section III.H.
health outcomes of repeated sub-concussive impact; and the relationship between concussion incidence and socioeconomic inequality. We conclude with an argument that despite the need for this (and much more) additional research, we are already at a point where we can communicate concussion risk to athletes and parents more effectively than we currently do.

A. We Need Better Concussion Measurement Tools

Based on our review in Part III, a primary limitation in assessing concussion incidence is a lack of consistency in defining and identifying what a concussion is. In response, a number of research teams across the world are exploring how biomarkers might be used to improve concussion definition, measurement, and care.317 These biomarkers may be based on blood tests,318 visual tracking,319 auditory response,320 or various brain imaging modalities.321 It is beyond the scope of this article to review that literature in detail, but we offer one illustrative example of how the integration of new technology might affect the assessment of concussion incidence.

At Mayo Clinic in Rochester, Minnesota, researchers are working with local hockey teams to change the way concussions are measured.322 Rather than rely solely on the diagnosis of an athletic trainer, Drs. Aynsley Smith and Michael Stuart, along with many colleagues, are exploring the use of new tools such as “standardized concussion surveys, the King-Devick test, quantified electroencephalogram, and blood analysis for brain cell-specific biomarkers.”323 Post-concussion electroencephalogram results may show disruptions in neurofunction that last longer than behavioral symptoms and cognitive

320. Nina Kraus et al., Auditory Biological Marker of Concussion in Children, 6 SCIENTIFIC REPORTS 1, 1-6 (2016).
323. Id. at 503.
dysfunction, which tend to dissipate within seven days post-concussion. Researchers also cite the utility of new biomarkers such as metabolomics (shown to differentiate concussed and non-concussed adolescent male hockey players) and αII-spectrin N-terminal fragment (SNTF) (detectable post-brain trauma, useful for determining return to play). Whether it is these technologies, or other new biomarkers, the field needs better tools to measure concussion incidence. This is all the more pressing given new concerns about sub-concussive impacts.

B. We Need to Know More About Sub-Concussive Impact

Our review in Part III focused on reported incidence of “concussion.” Yet it may also be the case that negative health outcomes result from a series of repeated sub-concussive impacts. Such impacts may not give rise to symptoms at the time of impact (or even for some considerable time later), but may manifest in poorer future health outcomes. Present surveillance methods are, by definition, incapable of ever capturing such impacts. This is because concussion, for the present, is clinically defined and assessed based on self-reported symptoms and cognitive-behavioral testing. But this may change in the future.

One researcher investigating sub-concussive impact is Dr. Thayne Munce and the Sanford Sports Science Institute. Munce led the longest-running study of youth football players using accelerometers and other measures to determine football’s impact on the brain. Dr. Munce measured Head Impact Exposure (HIE) using the accelerometry-based head impact telemetry (HIT) system and Sideline Response System at all practices and games.

During the study, 6,183 head impacts were measured across all participants; on average, each child had approximately 250 impacts over the season. In general, impacts per child per session varied greatly, with medians ranging from

---

324. Id.
326. Smith et al., supra note 3322, at 507 (In addition, they urge clinicians to identify these risk factors in possible concussed athletes: “(1) a history of previous concussions, (2) head contact exposures along with the frequency to known accelerations at over 80% probability, and (3) the on-ice position of forward in ice hockey.”).
330. Id. (Most occurred during practice (3,787 [61%]; n = 27), followed by games (2,037 [33%]; n = 9), and pre-game warm-ups (359 [9%]; n = 9)).
3 to 22 practice impacts and 6 to 18 game impacts. Both linear acceleration and rotational acceleration for measured head impacts were higher in games than in practices. In relation to the broader literature, the study’s data on football players aged 11 to 13 showed lower HIE than college and high school players due to both fewer sessions and fewer hits per session. However, head impact forces, “on a hit-by-hit basis, were nearly identical to those of high school players.”

Thus far in Munce’s research, football head impacts have not been associated with decreased neurological function on any measured outcomes, including ImPACT performance, oculomotor performance, and postural stability. In addition, there was no association between an individual athlete’s HIE and any neurological deficits on the measures used.

While the data from Munce’s studies is reassuring, data from a series of larger-scale studies at Purdue University raises concerns. The Purdue team, led by Thomas Talavage, a professor of electrical and computer engineering and biomedical engineering, and Eric Nauman, a professor of mechanical engineering, has consistently found potentially harmful brain change in all athletes playing football—even when those athletes do not report a concussion.

In a review essay synthesizing the Purdue team’s work and reviewing the field, the authors argue that the “evidence now suggests that head impacts commonly occur during contact or collision sports in which symptoms may not develop and there are no outward or visible signs of neurological dysfunction.” They argue that it is “the accumulation of multiple blows to the head, rather than a single event, that can produce neurological impairments.”

---

331. Id.
332. Id. at 1571 (Linear acceleration during practice had a mean of 25.0 g and a median of 19.9 g, contrasted with a mean of 26.8 g and a median of 20.9 g for games. For rotational acceleration, practices had a respective mean and median of 1628.6 and 1383.0 rad●s$^2$, while games had a respective mean and median of 1832.8 and 1448.5 rad●s$^2$).
333. Id.
334. Id. at 1574.
335. Munce et al., supra note 330, at 1567-68; see also Thayne A. Munce et al., Effects of Youth Football on Selected Clinical Measures of Neurologic Function: A Pilot Study, 29 J. CHILDMEDICAL NEUROLOGY 1601 (2014) (It should be noted, however, that these studies were small (n < 25) and limited to a single football team each. Due to the small sample size, it is not possible to generalize incidence or incidence rates.).
336. Munce et al., supra note 330, at 1572.
337. Victoria N. Poole et al., Sub-concussive Hit Characteristics Predict Deviant Brain Metabolism in Football Athletes, 40 DEV. NEUROPSYCHOL. 12, 12-17 (2015); Meghan Robinson et al., Proximal and Distal Effects of Subconcussive Head Impacts on fMRI Activity in Asymptomatic High School Football Players, PROC. INTL. SOC. MAG. RESON. MED. 21 (2013).
339. Id. at 1242.
accumulated sub-concussive impacts are a significant, or perhaps the most important, contributor to impaired mental functioning, the focus placed on “concussion incidence” itself may be misplaced.\textsuperscript{340}

\textbf{C. We Need to Know More about the Long-Term Effects of Sports Concussions}

At present, we do not have robust data on the long-term effects of sustaining a sports concussion. One foundational challenge is modeling the conceptualization of concussion. Diane Wiese-Bjornstal and colleagues have modeled the psychological response to sports concussion based on previous evidence from the sports-concussion literature.\textsuperscript{341} In summary, the model includes pre-injury risk factors that increase vulnerability to injury, post-injury personal and situational factors that may ameliorate or heighten negative psychological outcomes, and post-injury psychological care that can improve those outcomes.\textsuperscript{342} The psychological effects play an important role post-concussion, along with the biological/physiological effects. These deleterious psychological effects may be challenging to identify.\textsuperscript{343}

Even if we narrow our focus to on biomedical effects, a review of the literature by McAllister and McCrea found that an impact threshold or lower boundary for “concussion” is not yet known.\textsuperscript{344} However, animal models have shown that “mild head impacts not typically associated with cellular injury can nonetheless cause damage when repeated several times within a short time period.”\textsuperscript{345} Studies investigating head-impact frequency have shown variable results across teams, sports, age groups, type of activity (e.g. practice versus game) and position. For example, although on average there were between 520 and 652 impacts per high school football player, one player sustained 2,235 impacts in a single season.\textsuperscript{346}

Research into the short term effects of these types of head impacts have been mixed. Although concussed players showed deficiencies on cognitive tests, impact characteristics and frequency were not associated with self-reported

\textsuperscript{340} Additional research published in 2017 suggests that the brain’s default mode network may be affected by even just one year of playing youth football. See New Studies Show Brain Impact of Youth Football, RADIOLOGICAL ASSOCIATION OF NORTH AMERICA (Nov. 27, 2017), https://press.rsna.org/timssnet/Media/pressreleases/14_pr_target.cfm?id=1975; see also Heather G. Belanger et al., Subconcussive blows to the head: a formative review of short-term clinical outcomes, 31 J. HEAD TRAUMA REHABILITATION 159 (2016).

\textsuperscript{341} Diane M. Wiese-Bjornstal et al., Psychology of Sport Concussions, 4 KINESIOLOGY REVIEW 169 (2015).

\textsuperscript{342} Id. at 171.

\textsuperscript{343} Id. at 173-74.

\textsuperscript{344} Thomas McAllister & Michael McCrea, Long-Term Cognitive and Neuropsychiatric Consequences of Repetitive Concussion and Head-Impact Exposure, 52 J. ATHLETIC TRAINING 309, 314 (2017).

\textsuperscript{345} Id. at 310.

\textsuperscript{346} Id.
symptoms, balance issues or declining performance on cognitive tests. In addition, across several publications, even the history of multiple concussions is not associated with diminished neuropsychological performance. Using imaging techniques (e.g. fMRI and DTI) in small samples, head impact exposure and sub-concussive hits are associated with lower white-matter diffusion measures.

In the short term following a concussion, some individuals may show heightened symptoms of depression and anxiety, though not to clinically diagnosable levels. Links between increased risk of depression and concussion have also been seen as a long-term neuropsychiatric issue following a sports-related concussion. Higher rates of suicide amongst individuals with mTBI have also been seen, although repetitive concussion in athletes as “a risk factor for suicidality . . . has been refuted.”

Long-term effects of concussion remain unclear. While TBI has been supported as a risk factor for Alzheimer’s disease, the link is unclear and possibly non-existent amongst those who have suffered sports concussions. However, ex-professional football players did show an association between self-reported concussion history and diagnosed mild cognitive impairment late in life. In addition, athletes who began playing football before 12-years-old performed worse on cognitive tests, and had more symptoms of depression and apathy, independent of age, education and duration of play. Beginning football before 12-years-old more than doubled the risk of “clinically meaningful impairments in reported behavioral regulation, apathy and executive function” and more than tripled the risk of “clinically elevated depression scores.” On the other hand, a cohort study of Wisconsin men who played football in the late 1950s found no relationship between football participation and the onset of cognitive impairment or depression in later life.

Taken as a whole, these studies on the effects of concussion still leave open many questions about whether a sports concussion in youth affect life outcomes in meaningful ways. More research is needed.

347. Id. at 311.
348. Id. at 312.
349. Id.
350. Id.
351. Id.
352. Id. at 310.
353. Id. at 313.
354. Id.
356. Id. at 3.
357. Id.
D. We Need to Know More about Racial and Socioeconomic Inequality and Sports Concussion

In many social policy domains, scholars recognize the need to consider inequality along a variety of socioeconomic and cultural dimensions. Research on youth sports concussions has, with a few exceptions, failed to engage in the same critical dialogue. For instance, in 2014 the National Academy of Sciences published a 350-page report, *Sports-Related Concussions in Youth: Improving the Science, Changing the Culture.* The report was produced by the Institute of Medicine-National Research Council (IOM-NRC) Committee on Sports-Related Concussions in Youth, an esteemed group of researchers in medicine, neuroscience, public health, and other disciplines. Strikingly, the report contains no discussion of inequality (the word does not even appear in the document), and no discussion of race. This is, in part, due to the lack of data. As the NRC report recognizes, “studies of sports-related concussions in youth do not routinely include information on the race, ethnicity, or socioeconomic status of the participants.”

But the excuse that we do not discuss race or class in concussion policy because the data is unavailable rings hollow. It simply begs the question: why are we not actively collecting such data? Consider the state of Massachusetts, which leads the nation in terms of its legislatively mandated concussion reporting requirements for high schools. In a well-designed publication, schools are given explicit guidance on what data to collect from each student pre-participation (Figure 3). Noticeably absent is the student’s race. On-going research might better incorporate these racial and inequality dimensions.

Imagine tackling other public policy issues for youth—such as math performance or drug abuse—without consideration of such demographic and cultural intermediaries. In those other areas, the research community would find such omissions problematic because those socioeconomic factors likely play a role in outcome determination. Do we not think it would be the same with youth sports concussions?

---


361. Id. at 7-8.

What to notice in Figure 3: The state of Massachusetts requires high schools to collect a significant amount of data on each athlete treated for a sports concussion. Data on student race is not collected.
E. Improving Concussion Risk Communication

Over the past fifteen years, every state has passed a youth sports concussion law. While each state law looks somewhat different, a core component of virtually every law is a legislative mandate that schools and youth sports organizations provide concussion training for coaches and concussion education to athletes and parents.

For example, in the state of Minnesota, these organizations are required to “make information accessible to all participating coaches, officials, and youth athletes and their parents or guardians about the nature and risks of concussions, including the effects and risks of continuing to play after receiving a concussion, and the protocols and content, consistent with current medical knowledge from the Centers for Disease Control and Prevention . . . .” All coaches and officials are required “to receive initial online training and online training at least once every three calendar years . . . consistent with the . . . Concussion in Youth Sports online training program available on the Centers for Disease Control and Prevention Web site.” Similar provisions can be found in other states.

The animating theory behind such provisions is that more and better education will lead to improved health outcomes for youth athletes. But as we argue elsewhere, the evidence may not necessarily warrant such an assumption.

Here, our concern with educational materials is that they omit any direct discussion of the magnitude of concussion risks. That is, athletes and parents are told there is “a risk” and they learn about concussions, but they are not informed about the likelihood of sustaining a concussion.

To be sure, our review above suggests that making generalizable statements about concussion incidence in youth sports is very difficult. Almost all studies specifically of youth athletes rely on the discretion of individual athletic trainers or even the individuals themselves to diagnose and report concussions. Thus, there may be differences between districts and across states due to variations in concussion policy and law. Estimations in youth younger than high school age fare even worse; the one extant surveillance system for athletes younger than high school relies on athletic trainers unfamiliar with youth populations. In addition, estimations using medical records and physician diagnosed concussions may underreport concussions – the CDC estimated that 248,418 sports and recreation related TBI occurred in all individuals aged 19 and younger, while the High

364. Shen, supra note 34, at 8, 10-13.
365. Id. at 10-13.
367. Id.
368. Francis X. Shen et al., The Unknown Public Health Outcomes of Legislatively Mandated Concussion Education (draft) (on file with author).
370. Ctrs. for Disease Control & Prevention, supra note 79, at 1138.
School RIO that 187,427 concussions occurred in solely high school athletes in just nine sports. In addition, providing overall incidence rates fails to account for the wide variety in actual risk: over the course of a season, a football team is likely to report far more than 10 times as many concussions as most other sports.

On the basis of these limitations, some might argue that we need more data before we can give athletes and parents a reliable estimate. But this position overlooks the many strengths of the scientific literature. There are, as we have discussed, consistent ranges of concussion per athletic exposure; fairly consistent trends in which sports are more dangerous for the brain than others; and consistent data about the average severity of brain injury in sports. Yet none of this data is communicated to parents and athletes.

We think that should change. It is beyond the scope of this article to provide a detailed design for exactly how to communicate concussion risk. But such design is possible, and can make use of extensive literatures in fields such as medicine and public health on the effective communication of medical risk and uncertainty. Entire edited volumes and academic journals are devoted to the topic.

Recognizing that these are simply broad guidelines, and that specific policy would need to be worked out at greater length, the following principles could guide risk communication efforts:

- Provide accurate information on health risks and health benefits of particular sports, including where appropriate available estimates of the probability of risk.
- Use information communication techniques that are informed by best practices, such as using easy to understand language and appropriate presentation of statistics.

There are also potential liability implications of the current state of risk communication. To be sure, youth athletes are told (via boilerplate legal consent forms) that there are risks involved in their athletic participation. Here, for instance, is the Pop Warner youth football consent language for parents:

“I acknowledge that I am fully aware of the potential dangers of participation in any sport and I fully understand that participation in


372. O’Connor et al., supra note 116, at 177.

373. See e.g. Jonathan Crichton et al., COMMUNICATING RISK (2016); Regina E. Lundgren & Andrea H. McMahon, RISK COMMUNICATION: A HANDBOOK FOR COMMUNICATING ENVIRONMENTAL, SAFETY, AND HEALTH RISKS (2013); Baruch Fischhoff, COMMUNICATING RISKS AND BENEFITS (2012).
football, cheerleading and/or dance may result in SERIOUS INJURIES, PARALYSIS, PERMANENT DISABILITY AND/OR DEATH.

Furthermore, I fully acknowledge and understand that protective equipment does not prevent all participant injuries, and therefore I do hereby waive, release, absolve, indemnify, and agree to hold harmless the coaches, local, league and regional Pop Warner organization(s) . . .

If the educational materials provided to parents does not include information on the probability of the injury—and if that data exists and can be communicated—have parents really been made “fully aware of the potential dangers of participation”?

At the policy level, using evidence-based probabilistic estimates of concussion would also help to clarify our tolerance for risk. For instance, we recall here the example mentioned earlier, in Part III: assume that a youth league has 10 teams, each team has 20 players, and all players complete a season with 40 practices and 10 games. This would produce 10,000 AEs. If there is a reported incidence rate of 0.5 concussions per 1,000 AEs, that would indicate an average of 5 concussions occurring during that season across the entire league of 10 teams.

Going into the season, such a league could be given a general sense of what its concussion incidence will be. Indeed, it would not be hard to develop a simple plug-and-play formula for all stakeholders to determine (based on inputting a few parameters) what the estimated number of concussions will be for a particular sport season. The estimates would not be perfect, but they would be informative.

The extensive research literature we have reviewed has the potential to help athletes and parents become informed consumers. But to date, that potential has not been realized. Because official information sheets do not contain such information, the gaps are filled by anecdotes and media coverage. The scholarly research is left on the sidelines. Going forward, we hope that this research plays a more direct role in informing concussion education efforts.

V. CONCLUSION

This Article has examined the peer-reviewed research literature on concussion incidence rates in youth sports. Our review of over 100 studies reveals a complex, yet still informative empirical reality. On one hand, the data suggests that the vast majority of youth athletes will not sustain a concussion. Moreover, a majority of those who do experience a concussion will see their post-concussion symptoms dissipate within three weeks. At the same time, the data

clearly shows that there are serious, non-zero risks of brain injury from playing contact sports before and during high school. These risks are elevated in collision sports, and current data collection methods likely underestimate actual incidence rates. We argue that concussion education materials should be modified to include information about these known incidence rates of injury from concussion and sub-concussive hits. The data on incidence rates remains incomplete, but it is still informative. We should not hide it from youth athletes.
# Appendix, Literature Review Table: Incidence of Youth Head Injuries

<table>
<thead>
<tr>
<th>Study</th>
<th>Sport(s) &amp; Year(s)</th>
<th>Head Injury Definition</th>
<th>Denominator</th>
<th>Sample population</th>
<th>Incidence/Incidence Rate</th>
<th>Incidence (Rate) Calculation</th>
<th>Methodology/Data collection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faul et al. (2010)</td>
<td>Sports and recreation related activities / 2002-2006</td>
<td>Traumatic Brain Injury (TBI): defined using ICD-9-CM E-codes Mortalities determined by ICD-10 codes</td>
<td>Emergency department (ED) visits, hospitalizations and fatalities; Based on U.S. census data for population</td>
<td>U.S. medically attended TBI cases and fatalities (all ages)</td>
<td>2,198 TBI ED visits; 11,880 TBI hospital discharges / 1.7 million annual TBI / 300,000 annual sports and recreation-related TBI</td>
<td>Incidence rate was age adjusted based on U.S. population. Reported national figures were calculated using probability weighting based on demographics and accounting for non-response.</td>
<td>National Hospital Discharge Survey (NHDS), the National Hospital Ambulatory Medical Care Study (NHAMCS), and the National Vital Statistics System (NVSS)</td>
<td>An mTBI is associated with increased risk of binge drinking (1.8×), epilepsy (11×), mortality (7, depression, Alzheimer’s disease.</td>
</tr>
<tr>
<td>Bazarian et al. (2005)</td>
<td>Sports and recreation related activities / 1998-2000</td>
<td>Mild Traumatic Brain Injury (mTBI): defined with mechanisms using the</td>
<td>Emergency department visits (n = 70,900)</td>
<td>U.S. ED attended cases across all ages</td>
<td>878 mTBI cases (estimated 1,367,101 ED visits for mTBI per year)</td>
<td>Incidence per year is calculated based on the raw count of data and the assumption of 4.1 million ED</td>
<td>Conducted secondary analysis of ED visits in the National Hospital Ambulatory Medical Care</td>
<td>mTBI are primarily due to the 5 to 14 age group , (26.4% of ED-attended mTBIs in the 5 to 14 age group are due to</td>
</tr>
</tbody>
</table>

---


**How Dangerous Are Youth Sports for the Brain?**

<table>
<thead>
<tr>
<th>International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM)(^{378})</th>
<th>503.1 mTBI per 100,000 ED visits 32.3 sports-related mTBI in the ED per 100,000 population</th>
<th>Survey (NHAMCS)</th>
<th>(\text{bicycles or sport, which has the highest percentage of mTBI resulting from sports and recreation, followed by the 15 to 24 age group})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{TBI: ICD-9-CM diagnostic codes 800.0-801.9, 803.0-804.9, or 850.0-854.1 without admittance into the hospital or fatality in the ED; mechanism was based off E-code})</td>
<td>(\text{Average of the 1995 and 1996 mid-year U.S. Census estimates for non-institutionalized civilians})</td>
<td>(\text{Survey (NHAMCS)})</td>
<td>(\text{Conducted secondary analysis of ED visits in the National Hospital Ambulatory Medical Care Survey (NHAMCS) by averaging the data from the from 1995 and 1996 (standard error was very high from individual year data)})</td>
</tr>
<tr>
<td><strong>Guerrero, Thurman &amp; Sniezek (1999)(^{379})</strong></td>
<td>(\text{U.S. non-institutionalized civilians presenting at select ED with TBI diagnosis between 1995 and 1996})</td>
<td>(\text{Estimated by age range-0-14 years: 411,000 per year 15-24: 206 per year / 392 per 100,000 population per year,})</td>
<td>(\text{The study could not provide an accurate estimate of sports and recreation-related TBI due to the lack of definitive e-codes.})</td>
</tr>
<tr>
<td><strong>1995-1996</strong></td>
<td>(\text{449 counts (estimated 1,027,000 per year)})</td>
<td>(\text{Incidence was calculated based on weight of the individual cases and total amounts of ED visits in the United States (derived from the NCHS). Incidence rates were calculated using the denominator described, with further rates})</td>
<td>(\text{Estimated by age range-0-14 years: 411,000 per year 15-24: 206 per year / 392 per 100,000 population per year,})</td>
</tr>
</tbody>
</table>
**Concussion:** subset of TBI, coded by ICD-9 code 850 | Mid-year 1993 population estimates from the U.S. Census Bureau | 91,935 patient forms processed by the National Center for Health Care Statistics | 1,141 patient forms fitting TBI definition  
Estimated 1,144,807 ED visits annually for TBI  
Estimated 155,642 ED visits annually for concussion  
Estimated annual incidence rate of 4.44 ED attended TBI per 1,000 persons and 0.6 ED attended | Incidence rate and incidence was calculated based on the mid-year 1993 U.S. population estimate, along with data from the NCHS on the mean number of annual ED visits (combined data from 3 years of study to get average). | Conducted secondary analysis of ED visits in the National Hospital Ambulatory Medical Care Survey (NHAMCS) | In the 5 to 14 age group, males suffer TBI at 2.5 times the incidence rate of females. There is a trimodal risk model – highest in children younger than 5, the very elderly, and those 15 to 24. |

---

Self-report data from the National Sporting Goods sports participation data; includes those aged 7 – 17 who had participated in soccer at least once during the study period (1990 – 2014)\(^{382}\)

Emergency department visits of children aged 7 – 17 in the U.S. presenting with soccer-related injuries (n = 2,995,765) / 1990-2008: 48.91 per 1,000 participants 2008-2014: 234.13 per 1,000 participants

Incidence rate was calculated based on the number of reported concussions during two periods (1990-2008, 2008-2014), using the denominator of sports participation data.

The study used data from the National Electronic Injury Prevention Surveillance System – All Injuries Program (NEISS-AIP)\(^{383}\) to find soccer related injuries, with breakdown by specific injury type by the diagnosis codes in the NEISS-AIP.

In the 7 to 11 age range, boys had a higher proportion of concussions and head injuries than girls (6.2% versus 4.5%), while in the 12 to 17 age range girls had a higher proportion (8.7% versus 7.3%). Concussions and closed head injuries were more common in the 12-17 age group (7.9% vs. 5.5%).


\(^{382}\) NSGA collects self-report sports participation data from annual mail-based surveys of 30,000 preselected US households; it includes those 7 years old and older who have participated in a sport at least once during the 12-month period.

\(^{383}\) The United States Consumer Product Safety Commission also collects emergency department (ED) hospital records in both the U.S. and its territories via its National Electronic Injury Prevention Surveillance System (NEISS). Specifically, the NEISS collects consumer product related injury records from a national probability sample of 100 hospital ED from the U.S. ED open hours with 6 or more beds. Thus, researchers have used the data from this system to collect sports-specific information, based on the product or products associated with an injury (e.g. a soccer ball, basketball hoop). Reporters at the hospital EDs are instructed to match the attending physician’s diagnosis with one of the provided NEISS diagnostic codes, one of which is “concussion”. The NEISS is augmented with the NEISS – All Injury Program that samples a subgroup of 66 of these 100 hospitals for more in-depth data collection.
Coronado et al. (2015)\textsuperscript{384}  
<table>
<thead>
<tr>
<th>Sports and recreation-related TBI\textsuperscript{385} / January 1, 2001 to December 31, 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI: coded according to NEISS-AIP record with principal head injury diagnosis of either concussion or internal organ injury</td>
</tr>
<tr>
<td>U.S. census population data</td>
</tr>
<tr>
<td>Emergency department visits for sports-related injuries; all ages (n = 869,472 unweighted)</td>
</tr>
<tr>
<td>71,982 (8.3%) unweighted ED TBI cases; 3,417,370 weighted and age-adjusted ED TBI (7% of total sports and recreation-related injury ED visits) / 2001: 0.731 per 1,000 population 2012: 1.52 per 1,000 population</td>
</tr>
<tr>
<td>Incidence and incidence rate were weighted based on the inverse probability of their sampling, and age-adjusted according to the U.S. census population data. Specific incidence rates are weighted and given for 2001 and 2012.</td>
</tr>
<tr>
<td>NEISS-AIP</td>
</tr>
</tbody>
</table>

Haring et al. (2015)\textsuperscript{386}  
<table>
<thead>
<tr>
<th>Sports-related /</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI: ICD-9 codes of 800.0-801.9, 803.0-</td>
</tr>
<tr>
<td>Population estimates were based on U.S.</td>
</tr>
<tr>
<td>Emergency department visits for 65</td>
</tr>
<tr>
<td>Total (all years)</td>
</tr>
<tr>
<td>Incidence rate was calculated based on U.S.</td>
</tr>
<tr>
<td>Nationwide Emergency Department</td>
</tr>
<tr>
<td>96.5% cases were mild, with AIS scores of 1 or 2; a</td>
</tr>
</tbody>
</table>


\textsuperscript{385} Collected data on 39 specific sports and recreation related activities: all-terrain vehicle (ATV) use, baseball, basketball, bicycling, football, golf, gymnastics, ice hockey, horseback riding, playground activities, soccer, scooter use, softball, trampoline, and volleyball. Because of small sample sizes, selected activities that share certain characteristics were combined, including combative sports/wrestling; exercise/weight lifting; inline/roller skating; miscellaneous ball sports; moped/minicar/offroad vehicles/go-cart; snow sports (ie, snow skiing, ice skating, toboggan/sled/discovery, and snowmobile); swimming/water sports (ie, water skiing/surfing, personal watercraft, and fishing); and racket sports/tennis.

2006-2011

<table>
<thead>
<tr>
<th>2006-2011</th>
<th>804.9, 850.0-854.18; specified sports-related using mechanism E-codes of 917.0 and 917.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-14 years:</td>
<td>123,124 sports-related TBI</td>
</tr>
<tr>
<td>15-18 years:</td>
<td>195,947 sports-related TBI</td>
</tr>
<tr>
<td>In 2011 – Under 12:</td>
<td>0.346 sports-related TBI per 1,000 population</td>
</tr>
<tr>
<td>12-15:</td>
<td>2.37 per 1,000 population</td>
</tr>
<tr>
<td>15-18:</td>
<td>2.372 per 1,000 population</td>
</tr>
<tr>
<td>18-24:</td>
<td>0.366 per 1,000 population</td>
</tr>
</tbody>
</table>

Census data, which is based on 5-year age groups (e.g. 10-14, 15-19), and under presenting with sports-related TBI cases (n = 487,221) 

Census data which divides population counts into 5-year groups, so their reported figures do not perfectly reflect actual population counts; the authors divided counts into age ranges based on school years (e.g. middle school and high school). 

Sample (NEDS) of the Healthcare Cost and Utilization Project (HCUP) of the Agency for Healthcare Research and Quality (AHRQ). Data from those over 65 were excluded because they represented less than 0.1% of cases. 

Buzas, Jacobsen & Morawa (2014) 

Youth basketball, baseball, football, gymnastics, hockey, lacrosse, soccer, concussion: defined using search query of the specific code for sport in conjunction with head body part (location code) 

All NEISS eligible emergency departments (sampled: n = 100) 

4,864 youth (aged 4 – 13) concussion cases [mean age: 11.1; median age: 12.0](excluded 

4,864 cases with concussion diagnosis / National estimate: 117,845 

National estimates determined from the count of cases, then inversely weighted based on the NEISS 

NEISS 

All sports increased in number of concussion cases from 2002 through 2012; football and gymnastics (~6x); baseball and softball (~3x); wrestling 

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of Sport</th>
<th>Years</th>
<th>Concussion Definition</th>
<th>All NEISS Eligible Emergency Departments</th>
<th>Estimated National Concussions</th>
<th>NEISS Sampled: n = 100</th>
<th>NEISS Sampled: n = 100</th>
<th>NEISS Sampled: n = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobson, Buzas &amp; Morawa (2013)</td>
<td>Youth football</td>
<td>January 1st, 2002 – December 31st, 2012</td>
<td>Concussion: defined using search query of all football-related head injuries (football product code 1211) with head body part (location code 75), with a diagnosis of concussion</td>
<td>2,208 football players with concussion diagnosis (aged 5 – 13 years, mean age = 11.2 years) (excluded 374 cases)</td>
<td>Estimated 49,185 national concussions over the 11 year time frame (1,784 in 2002; 10,797 in 2012)</td>
<td>Estimated 49,185 national concussions over the 11 year time frame (1,784 in 2002; 10,797 in 2012)</td>
<td>Estimated 49,185 national concussions over the 11 year time frame (1,784 in 2002; 10,797 in 2012)</td>
<td></td>
</tr>
</tbody>
</table>

388. Excluded on the basis of narratives for each case: “those that mentioned ‘play with [a sibling/family member],’ ‘play at home,’ ‘gym class,’ ‘PE [physical education]’” or ‘pick-up game’”; described “bystanders who were injured in the stands or individuals who were injured while helping at practice”; “where the injury occurred from another event and the individual was only identified as a football player”; and “all cases that had a location other than school, place of recreation or sports, or was not recorded” from id. At 2.


390. Excluded on the basis of narratives for each case: “those that mentioned ‘play with [a sibling/family member],’ ‘play at home,’ ‘gym class,’ ‘PE [physical education]’” or ‘pick-up game’”; described “bystanders who were injured in the stands or individuals who were injured while helping at practice”; “where the injury occurred from another event and the individual was only identified as a football player”; and “all cases that had a location other than school, place
of recreation or sports, or was not recorded” from id. At 2.


392. Bicycling, football, playground, basketball, soccer, baseball, all-terrain vehicle riding, skateboarding, swimming, hockey (ice, field, roller, street), miscellaneous ball games (lacrosse, rugby, handball, tetherball), horseback riding, moped/dirt bike riding (two-wheeled, powered, off-road vehicles, dune buggies), scooter riding, gymnastics (cheerleading, gymnastics), combative sports (boxing, wrestling, martial arts, fencing), golf (including relating to golf carts), softball, exercising, tobogganing/sledding, trampolining, ice skating, volleyball, amusement attractions (rides, water slides but not swimming pool slides), roller skating/unspecified skating, go-cart riding, in-line skating, track and field, racquet sports (tennis, badminton, squash), bowling, other specified (water skiing, surfing, personal watercraft, snow skiing, snowmobiling, snowboarding, camping, fishing, archery, darts, table tennis, nonpowder/BB gun, billiards).

| CDC (2011)³⁹¹ | Organized and unorganized sports and recreation activities³⁹² / 2001-2009 | TBI: coded according to NEISS-AIP record with principal head injury diagnosis of either concussion or internal organ injury | U.S Census data from 2001 to 2009, age 19 and younger | 453,655 ED sports and recreation-related cases of patients age 19 and younger | 36,320 ED visits for sports and recreation-related TBIs over study period / Estimated annual incidence 2001: 153,375 2009: 248,418 / Estimated annual incidence rate | Incidence rates were calculated based on the U.S. Census data during the study period from 2001 to 2009, using the weighted incidence from author’s calculations based on weighting samples based on inverse probability of selecting the case. | NEISS-AIP | There was a 62% increase in annual estimated sports/recreation-related TBI incidence from 2001 to 2009 |

²⁰¹⁸] HOW DANGEROUS ARE YOUTH SPORTS FOR THE BRAIN? 129
| CDC (2007)$^{393}$ | Organized and unorganized sports and recreation activities$^{394}$ / 2001-2005 | TBI: coded according to NEISS-AIP record with principal head injury diagnosis of either concussion or internal organ injury | U.S. Census bridged-race population estimates from 2001 to 2005, 19 and younger | 347,597 sports-related ED visits for those age 19 and younger | Unweighted 21,876 sports and recreation-related TBI (19 and younger) / Youth and adolescents (5–18) have estimated annual incidence of 134,959 sports and recreation-related TBI | Incidence rates were calculated based on the U.S. Census data during the study period from 2001 to 2009, using the weighted incidence from author’s calculations based on weighting samples based on inverse probability of NEISS-AIP | The 10 to 14 age group has the highest rates of sports-related TBI ED visits for males and females, followed by the 15 to 19 age group. Males had higher rates than females across all ages, but especially in the 5 to 19 age range. |


394. Bicycling, football, playground, basketball, soccer, baseball, all-terrain vehicle riding, skateboarding, swimming, hockey (ice, field, roller, street), miscellaneous ball games (lacrosse, rugby, handball, tetherball), horseback riding, moped/dirt bike riding (two-wheeled, powered, off-road vehicles, dune buggies), scooter riding, gymnastics (cheerleading, gymnastics), combative sports (boxing, wrestling, martial arts, fencing), golf (including relating to golf carts), softball, exercising, tobogganing/sledding, trampolining, ice skating, volleyball, amusement attractions (rides, water slides but not swimming pool slides), roller skating/unspecifed skating, go-cart riding, in-line skating, track and field, racquet sports (tennis, badminton, squash), bowling, other specified (water skiing, surfing, personal watercraft, snow skiing, snowmobiling, snowboarding, camping, fishing, archery, darts, table tennis, nonpowder/BB gun, billiards).
| Bakhos et al. (2010) | Organized [football, basketball, baseball, ice hockey and soccer] and unorganized recreation and competitive sports, both individual and team / January 1, 1997 to December 31, 2007 | Concussion: diagnosis of concussion in the NEISS or NEISS-AIP. The authors restricted location codes to school and place of recreation or sport. | Participation data was drawn from the National Sporting Goods Association (NSGA). Population data was taken from U.S. Census data. | All 8- to 19-year olds diagnosed with a concussion diagnosis were included in the study population. | Estimated 502,000 concussions (2001-2005) / 8-13 years old: 4 per 1,000 population 14-19 years old: 6 per 1,000 population | Estimated incidence is based on the likelihood of a specific case being selected, and weighted according to participation data. The incidence rates were determined based on U.S. Census population data. | NEISS (January 1, 1997) NEISS AIP (January 1, 2001 to December 31, 2005) | 8- to 13-year olds had the highest risk of ED visit for concussion in football, followed by basketball, baseball, soccer and ice hockey. In 14- to 19-year olds, football remained the highest incidence, followed by soccer, basketball, ice hockey and baseball. |
| Shields & Smith (2006) | Cheerleading / 1990-2002 | Concussion: coded as concussion or closed head | The Superstudy of Sports Participation data; includes Cheerleading-related ED visits of 77 unweighted concussion and closed head injury events | Weighted incidence calculated based on nationwide | NEISS | The authors estimated that 208,800 of 5- to 18-year olds sustained... |


396. NSGA collects self-report sports participation data from annual mail-based surveys of 30,000 preselected US households; it includes those 7 years old and older who have participated in a sport at least once during the 12-month period.

Rosenthal et al. (2014)\(^{398}\) High school football, boys’ and girls’ soccer, boys’ and girls’ basketball, wrestling, baseball, volleyball, and softball / 2005-2006 and 2011-2012 academic years

<table>
<thead>
<tr>
<th>Concussion: reported according to judgment of participating certified athletic trainer (ATC); only concussions that led to participation loss were reported</th>
<th>Athlete exposure (AE): 1 athlete participating in 1 game or practice (n = 11,268,426 AEs)</th>
<th>Incidence rate calculated by dividing concussions per year by AEs per year (per 1,000 AEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation</td>
<td>Athlete exposure: 1 athlete participating in 1 game or practice (n = 11,268,426 AEs)</td>
<td>High School Reporting Information Online system (HS RIO)</td>
</tr>
<tr>
<td>High school athletes (~ ages 14 – 19)</td>
<td>4,024 concussions over study period / 0.23 per 1,000 AEs in 2005-2006; 0.51 per 1,000 AEs in 2011-2012</td>
<td>Overall concussion incidence rate increased from 0.23 to 0.51 per 1,000 AEs; during the 2005-2006 school year all schools changed from 2 part-time ATC to 1 full-time and 1 part-time ATC.</td>
</tr>
</tbody>
</table>

---

How dangerous are youth sports for the brain?

| Marar et al. (2012)\(^{399}\) | High school football, boys’ and girls’ soccer, girls’ and boys’ volleyball, boys’ and girls’ basketball, baseball, softball, boys’ ice hockey, boys’ and | Concussion: reported according to judgment of participating ATCs; Concussions do not require participation loss to report | Athlete exposure (AE): 1 athlete participating in 1 competition or practice Injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in | High school athletes (~ ages 14 – 19) / 7,780,064 AEs | 1,936 concussions (n = 1,289 during competition) / 0.25 concussions per 1,000 AEs (0.64 game concussions per 1,000 AEs, 0.11 practice concussions per 1,000 AEs) | Incidence rate calculated by dividing total concussions by total AEs (per 1,000AEs) | HS RIO and National High School Sports-Related Injury Surveillance convenience sample | In more 20% of cases across all sports, symptoms resolved within a day, 40% within a week and 80% within a month; 11.5% of athletes sustaining concussions during study reported a prior concussion. |

---

<table>
<thead>
<tr>
<th>girls’ lacrosse, girls’ field hockey, cheerleading, girls’ and boys’ track and field, boys’ and girls’ swim/dive, and girls’ gymnastics / 2008-2009 and 2009-2010 academic years</th>
<th>restriction of athlete’s participation in either practice or competition for 1 or more days [included all dental injuries, concussions, or fractures]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meehan et al. (2011)(^{400})</td>
<td>High school football, boys’ and girls’ soccer, girls’ and boys’ volleyball, boys’ and girls’</td>
<td>Concussion: reported according to the judgment of participating ATC; concussions do not require loss</td>
</tr>
<tr>
<td></td>
<td>Athlete exposure (AE): 1 athlete participating in 1 competition or practice [n = 1,763,241] Injury: had to occur during</td>
<td>High school athletes (~ ages 14 to 19) from 192 schools included in HS RIO and extension [only boys’]</td>
</tr>
<tr>
<td></td>
<td>1,056 concussions (14.6% of total injuries) / Football: 0.768 per 1,000 AEs</td>
<td>Concussions were calculated as a percent of total injuries sustained within each of the sports, and per 1,000 AEs</td>
</tr>
<tr>
<td></td>
<td>HS RIO</td>
<td>94.4% of concussions were managed by the ATC, and 58.8% by a primary care physician. Less than 5% were seen by orthopedic physicians, nurse</td>
</tr>
</tbody>
</table>

---

2018] HOW DANGEROUS ARE YOUTH SPORTS FOR THE BRAIN?  135

<table>
<thead>
<tr>
<th>Sports</th>
<th>Time to report</th>
<th>Incidence Rate</th>
<th>HS RIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basketball, wrestling,</td>
<td>1 athlete</td>
<td>0.619 per 1,000 AE</td>
<td>HS RIO</td>
</tr>
<tr>
<td>Baseball, softball, boys’ ice</td>
<td>1 athlete</td>
<td>0.466 per 1,000 AE</td>
<td>HS RIO</td>
</tr>
<tr>
<td>Hockey, boys’ and girls’</td>
<td>1 athlete</td>
<td>0.33 per 1,000 AE</td>
<td>HS RIO</td>
</tr>
<tr>
<td>Lacrosse, girls’ field hockey,</td>
<td>1 athlete</td>
<td>0.33 per 1,000 AE</td>
<td>HS RIO</td>
</tr>
<tr>
<td>Cheerleading</td>
<td></td>
<td></td>
<td>HS RIO</td>
</tr>
<tr>
<td>Boys’ and girls’ swim/dive,</td>
<td></td>
<td></td>
<td>HS RIO</td>
</tr>
<tr>
<td>Girls’ gymnastics</td>
<td></td>
<td></td>
<td>HS RIO</td>
</tr>
<tr>
<td>2009-2010 academic year</td>
<td></td>
<td></td>
<td>HS RIO</td>
</tr>
</tbody>
</table>

Castile et al. (2012)\textsuperscript{401} High school football, boys’ and girls’ soccer, Concussion: reported according to judgment of Athlete exposure (AE): 1 athlete participating in High school athletes (~14 – 19) / 2,417 concussions (2,119 new concussions, Incidence rate calculated by dividing total HS RIO A player with a recurrent concussion was more likely to take more than 3

<table>
<thead>
<tr>
<th>Boys’ and girls’ basketball, wrestling, baseball, volleyball, and softball / 2005-2006 through 2009-2010 academic years</th>
<th>Participating ATC; concussions must lead to participation loss to report until 2007-2008, after which any can be reported</th>
<th>1 competition or practice injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation in either practice or competition for 1 or more days [after 2007-2008, included all dental injuries, concussions, or fractures]</th>
<th>9,503,641 AEs</th>
<th>282 recurrent concussions) / 0.253 concussions per 1,000 AEs (0.222 new concussions per 1,000 AEs, 0.031 recurrent concussions per 1,000 AEs)</th>
<th>Concussions by total AEs (per 100,000 AEs)</th>
<th>Weeks to return to play (7.5% versus 3.8%) or be medically disqualified than a player with a new concussion (16.8% versus 2.9%).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meehan, d’Hemecourt &amp; Comstock (2010)[402]</td>
<td>High school football, boys’ and girls’ soccer,</td>
<td>Concussion: reported according to judgment of</td>
<td>Athlete exposure (AE): 1 athlete participating in</td>
<td>High school athletes (~ages 14 – 19) /</td>
<td>544 concussions 309 (56.8%) occurred in football, 65</td>
<td>Incidence reported according to sport: no</td>
</tr>
</tbody>
</table>

| boys’ and girls’ basketball, wrestling, baseball, volleyball, and softball / 2008-2009 academic year | participating ATC; Concussions do not require participation loss to report | 1 competition or practice Injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation in either practice or competition for 1 or more days [included all dental injuries, concussions, or fractures] | 9,503,641 AEs | (11.9%) occurred in girls’ soccer, 50 (7.4%) occurred in wrestling, 38 (7%) occurred in girls’ basketball, 36 (6.6%) in boys’ soccer, 22 (4%) in softball, 20 (3.5%) in boys’ basketball, and 6 (1.1%) in girls’ volleyball | incidence rates reported | hours, 26.3% resolved between 1 to 3 days, and 20.2% between 4 to 6 days; 1.5% had symptoms longer than a month (more likely with younger, not significant); neuropsychological testing was used in 25.7% of cases |

| Swenson et al. (2009) | High school football, boys’ and Concussion: reported according to Athlete exposure (AE): 1 athlete | High school athletes (~ ages 14 – 19) | Concussions composed ~12% of 1,445 | No incidence reported, just percentages that | HS RIO | Athletes who suffered recurrent injuries were 3 times |


<table>
<thead>
<tr>
<th>Darrow et al. (2009) (^{404})</th>
<th>High school football, boys’ and girls’ soccer, boys’ and girls’ basketball, wrestling, baseball, volleyball / 2005-2006 through 2007-2008 academic years</th>
<th>judgment of participating ATC; concussions must lead to participation loss to report until 2007-2008, after which any can be reported</th>
<th>participating in 1 competition or practice ((n = 5,627,921) AEs)</th>
<th>recurrent and ~8% of 12,310 new injuries</th>
<th>were calculated based on national population estimates</th>
<th>as likely to discontinue sport participation (2.4% versus 7%); 13% of recurrent injuries leading to discontinuation were concussions.</th>
</tr>
</thead>
</table>

| girls’ soccer, boys’ and girls’ basketball, wrestling, baseball, volleyball / 2005-2006 and 2006-2007 academic years | participating in 1 competition or practice (n = 3,550,141 AEs) | Injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation in either practice or competition for 1 or more days. Severe injury: must lead to > 21 days lost from participation (n = 1,378) | estimate of 446,715 severe injuries / Boys’ soccer: 11.8% of severe injuries Girls’ volleyball: 8.9% of severe injuries Girls’ soccer: 7.7% of severe injuries of total severe injuries, based on the weights of individual cases. From this, they calculated the percentage of severe injuries that were concussions overall and per sport. | girls’ and boys’ severe injuries (6.7% and 5.7% respectively) but boys suffered significantly more severe injuries (n = 141,362 vs. 205,353) [both national estimates over the period] |

<table>
<thead>
<tr>
<th>Reference</th>
<th>Setting</th>
<th>Concussion: concussions reported according to judgment of participating ATC; concussions must lead to participation loss to report</th>
<th>Athlete exposure (AE): 1 athlete participating in 1 competition or practice Injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation in either practice or competition for 1 or more days</th>
<th>High school athletes (~ ages 14 – 19)/1,730,764 AEs (1,246,499 practices and 484,286 competitions)/4,431 injuries</th>
<th>396 concussions (8.9% of total injuries)</th>
<th>Incidence rate calculated by dividing concussions by AEs and national incidence and incidence rate were calculated based on the weighted probability of the event occurring compared to the national population.</th>
<th>HS RIO</th>
<th>Symptoms resolved for 50% of athletes in all sports besides girls’ basketball and softball within 3 days and 50% of athletes returned to play within 9 days.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gessel et al. (2007)</td>
<td>High school football, boys’ and girls’ soccer, boys’ and girls’ basketball, wrestling, baseball, volleyball / 2005-2006 academic year</td>
<td>Concussion: concussions reported according to judgment of participating ATC; concussions must lead to participation loss to report</td>
<td>Athlete exposure (AE): 1 athlete participating in 1 competition or practice Injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation in either practice or competition for 1 or more days</td>
<td>High school athletes (~ ages 14 – 19)/1,730,764 AEs (1,246,499 practices and 484,286 competitions)/4,431 injuries</td>
<td>396 concussions (8.9% of total injuries)</td>
<td>Incidence rate calculated by dividing concussions by AEs and national incidence and incidence rate were calculated based on the weighted probability of the event occurring compared to the national population.</td>
<td>HS RIO</td>
<td>Symptoms resolved for 50% of athletes in all sports besides girls’ basketball and softball within 3 days and 50% of athletes returned to play within 9 days.</td>
</tr>
<tr>
<td>Kerr et al. (2017)</td>
<td>High and collegiate</td>
<td>Concussion: defined in the NEISS via a NEISS Included all ED cases with code</td>
<td>NEISS Included all ED cases with code</td>
<td>High school athletes (~ ages 14 – 19), 14-17 year olds HS RIO: 603,371</td>
<td>National estimates were derived from</td>
<td>NEISS + NEISS-AIP, HS RIO and NCAA ISS</td>
<td>About 3.6% of ED cases for 10 – 13 year-olds were</td>
<td></td>
</tr>
</tbody>
</table>

### School Soccer

| NEISS: January 1st, 2004 - December 31st, 2013; HS RIO: 2005-2006 through 2013 academic years; NCAA ISS: 2009-2010 through 2013 academic years | Diagnosis code of “concussion” [based on coders and the primary physician’s diagnosis] and for HS RIO/ NCAA ISS according to the discretion of individual ATCs/physicians/etc. | For soccer aged more than 2 years (captured 63,258 soccer injuries over the period) HS RIO/ NCAA ISS Athlete exposure (AE): 1 athlete participating in 1 competition or practice Injury: had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation in either practice or competition for 1 or more days collegiate athletes (aged ~18 – 22) and ED cases aged 14 – 22 concussions nationally NEISS: 1,459 concussions nationally / 18-22 year olds NCAA ISS: 8,445 concussions nationally NEISS: 5,865 concussions nationally each of the datasets by calculating national estimates based off the sample weights of individual cases within the data sets. The reported figures are the total for the whole study period. concussions, as well as 2.5% of 5 to 9 year-olds. About 17.9% of injuries from the HS RIO were concussions, versus 7.6% of NEISS injuries for 14 - 17-year olds (2.75 IPR). From the NCAA ISS, 5.9% of injuries are concussions, with 4.6% of NEISS cases for 18 - 22 year-olds (IPR = 1.3) |
| Matic et al. (2015)\(^{407}\) | Boys’ ice hockey / 2008-2009 through 2012-2013 academic years | **Concussion:** reported according to the discretion of individual ATCs at each high school | **Athlete exposure (AE):** 1 athlete participating in 1 competition or practice (n = 311,817 AEs) | **Injury:** had to occur during organized training or competition, require medical attention from team ATC or a physician and result in restriction of athlete’s participation in either practice or competition for 1 or more days | **High school athletes (~ ages 14 – 19)** | **200 concussions (27.6% of 724 total injuries) / 0.64 per 10,000 AEs** | **Incidence rate was calculated from raw number of concussions divided by the total number of athlete exposures** | **HS RIO** | Concussion was the most frequent reported injury (27.6% of injuries). Competitions had higher rates of injury than practices. |

---

### 2018] HOW DANGEROUS ARE YOUTH SPORTS FOR THE BRAIN?  

#### Kerr et al. (2014) \(^\text{408}\)  
High school football / 2008-2009 through 2012-2013  
**Concussions:** reported according to judgment of participating ATC; concussions do not need to lead to participation loss to be reported  
**Athlete exposure (AE):** 1 athlete participating in 1 competition or practice  
High school athletes (aged ~14 – 19)  
2012-2013: 0.92 per 1,000 AEs  
Concussion incidence rate was calculated based on total reported concussions divided by the total athlete exposures.  
HS RIO  
The incidence and incidence rate of concussions increased from previous years.

#### Borowski et al. (2008) \(^\text{409}\)  
High school boys' and girls' basketball / 2005-2006 and 2006-2007 academic years  
**Concussion:** reported according to judgment of participating ATC; concussions must lead to participation loss to report  
**Athlete exposure (AE):** 1 athlete participating in 1 competition or practice (n = 780,651 AEs)  
Injury: had to occur during organized training or competition, require medical attention from team ATC or a  
High school athletes (~14 – 19) / 1,518 injuries (745 girls, 735 boys)  
7% of reported injuries were concussions / Girls: 5% of practice injuries; 14% of competition injuries Boys: 3% of practice injuries; 6% of competition injuries  
Concussion proportion was calculated from the data reported.  
HS RIO  
Girls were twice as likely to sustain a concussion than boys.

---


| O’Connor et al. (2017)\textsuperscript{410} | High school boys’ football, boys’ wrestling, girls’ field hockey, girls’ gymnastics, girls’ volleyball, boys’ baseball, girls’ softball. | **Sports-related concussion:** reported by ATCs using their state or local guidelines; in the absence of such guidelines, the Consensus Statement on Concussion in Sport\textsuperscript{411} | **Athlete exposure (AE):** 1 athlete participating in 1 competition or practice | High school athletes (~ ages 14 – 19) | 2,004 concussions / 0.389 per 1,000 AEs | Incidence rates were calculated based on number of sports-related concussions reported divided by total AEs | National Athletic Treatment, Injury and Outcomes Network (NATION)\textsuperscript{412} surveillance system. Draws from convenience sample of 147 total high schools across 26 states; not all schools reported for all years | 2.9% (n = 59) of reported concussions were recurrent. Competition rates overall were significantly higher than practice rates (3.3 time as high). In gender-comparable sports (baseball or softball, basketball, crew, cross-country, lacrosse, soccer, swim/dive, tennis, indoor and outdoor. |


\textsuperscript{411} “A complex pathophysiological process affecting the brain, induced by biomechanical forces.”’ from Id. At page 176.

\textsuperscript{412} [http://www.datalyscenter.org/nation/2/](http://www.datalyscenter.org/nation/2/)
| boys’ and girls’ basketball, boys’ and girls’ crew, boys’ and girls’ cross-country, boys’ and girls’ lacrosse, boys’ and girls’ soccer, boys’ and girls’ indoor and outdoor track and field, boys’ and girls’ swimming and diving, boys’ and girls’ tennis, boys’ and girls’ golf | track/field), girls had 1.56 times the rate of boys (0.264 per 1,000 for girls and 0.169 per 1,000 for boys); Girls and boys did not differ in distribution of number of symptoms in gender comparable sports |
| Kerr et al. (2016)\(^{413}\) | Youth and high school football / 2012 – 2014 seasons | **Concussion:** reported according to discretion of individual ATCs; they were encouraged to use the definition from the Consensus Statement on Concussion in Sport\(^{414}\) | 118 youth (aged 5 to 14) teams reporting 310 team seasons (1 team completing 1 season) and 96 public high school (aged ~14 – 19) programs reporting 184 team seasons. NATION draws from a convenience sample of high schools with ATCs, and does not record demographic information (size, rural vs. urban, etc.) of youth and high school teams. | 95 youth game and 87 youth practice concussions; 357 high school game and 478 high school practice concussions / 2.13 youth game concussions per 1,000 AEs and 0.53 youth practice concussions per 1,000 AEs; 1.61 high school game concussions per 1,000 AEs; and 0.47 high school practice concussion incidence and incidence rate were calculated per study (YFSS or NATION) and by games and practices. Total concussion incidence was divided by total AE of that particular type, then multiplied by 1,000. | The authors used data from the Youth Football Safety Study (YFSS)\(^{415}\) and the National Athletic Treatment, Injury and Outcome Network (NATION)\(^{416}\). ATCs recruited by Datalys Center\(^{417}\) attended all games and practices, and used preferred electronic applications to record injuries. | One key limitation described by the study authors was that ATCs lacked familiarity with the youth population, who may have presented with different types of symptoms or had poorer understanding of concussion than older athletes. Almost all players (>98%) reported headaches, and very few players (1.7% of youth, 3.6% of high school) presented with loss of consciousness. |

---


\(^{414}\) 4\(^{th}\) Consensus Statement on Concussion in Sport; [http://bjsm.bmj.com/content/47/5/250](http://bjsm.bmj.com/content/47/5/250)


\(^{416}\) [http://www.datalyscenter.org/nation/](http://www.datalyscenter.org/nation/)

\(^{417}\) [http://www.datalyscenter.org/](http://www.datalyscenter.org/)
<table>
<thead>
<tr>
<th>Study</th>
<th>Fall sports</th>
<th>Concussion</th>
<th>Concussion incidence</th>
<th>Incidence rate calculation</th>
<th>ATCs at 24 Oregon high schools kept a concussion log, where they recorded information about the injury, symptoms, number of days until return to play, whether or not a health care professional was seen for evaluation and treatment, and classroom accommodations received</th>
<th>Most (n = 297, 87%) of athletes who sustained a concussion returned to play by the end of the 90-day study period.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glang et al. (2015)418</td>
<td>High school</td>
<td>Concussion: recorded according to the discretion of ATCs, who were legally obligated by Oregon state law to have annual concussion training</td>
<td>Fall sport athletes</td>
<td>Incidence rate was calculated by dividing the number of concussions by the total number of fall sport athletes.</td>
<td>ATCs at 24 Oregon high schools kept a concussion log, where they recorded information about the injury, symptoms, number of days until return to play, whether or not a health care professional was seen for evaluation and treatment, and classroom accommodations received</td>
<td>Most (n = 297, 87%) of athletes who sustained a concussion returned to play by the end of the 90-day study period.</td>
</tr>
<tr>
<td>Kerr et al. (2015)419</td>
<td>Boys’ recreational youth football / 2012-2013</td>
<td>Concussion: &quot;any functional neurologic disturbance resulting from head</td>
<td>Athlete-exposures (AE): 1 player participating in 1 game or</td>
<td>Incidence rate was calculated overall by dividing the total incidence of concussion by</td>
<td>The study was a 2-year prospective cohort design comparing two different types of leagues, one</td>
<td>In age-only leagues, concussions constituted 12.9% of total injuries, while they only composed 7.2% of total</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Bompade et al. (2014)</th>
<th>High school baseball, basketball, cross-country, football, gymnastics, volleyball, and wrestling / 2008-2009 to 2010-2011</th>
<th>Concussion: up to the individual discretion of the high school trainers and had to be documented through SportsWare, an extant injury surveillance system.</th>
<th>Athlete-exposures (AE): 1 athlete participating in 1 practice or game (n = ~300,000 annual AEs)</th>
<th>~4,500 Seattle public high school athletes (aged 13-19 years) annually during the study period across the studied sports</th>
<th>Incidence rate was calculated annually based on the number of documented concussions and the total number of documented athlete exposures</th>
<th>Comparison of retrospective and prospective analysis of an extant injury surveillance system in Seattle area public high schools. They evaluated the incidence of concussions prior to and following the implementation of the Lystedt law.</th>
<th>Concussion accounted for about 11.5% of injuries prior to the law; post-implementation, they represented about 20% of injuries. Athletes were kept out of play for ~6 days longer post-implementation of the law compared to pre-implementation.</th>
</tr>
</thead>
</table>

420. Id. at 3.
422. 3 components: “1. Education of athletes and parents or guardians about concussion. The athlete and parent or guardian must sign and return a form that provides this information. The mandatory coach’s education occurs through the Washington Interscholastic Activities Association (Renton, WA); 2. Removal of a youth athlete from practice or play at the time of a suspected concussion or head injury.; 3. Return to practice or play only with the written permission of a licensed health care provider trained in the evaluation and management of concussion.” Id. at 487.
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Incidence Rate</th>
<th>Number of Concussions</th>
<th>Average Number of Concussions per 1,000 Athlete Exposures</th>
<th>Recovery Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-2009</td>
<td>High School baseball, basketball, cheerleading, cross country, football, golf, soccer, softball, swimming and diving, tennis, track and field, volleyball, and wrestling</td>
<td>0.169 concussions per 1,000 AEs</td>
<td>81</td>
<td>0.169</td>
<td>88% for 10 days</td>
</tr>
<tr>
<td>O’Kane et al. (2014)(^{425})</td>
<td>Girls’ youth soccer / 2008-2009 through 2011-2012 seasons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Concussion</strong>: operationalized based on symptoms(^{426}) from the 3rd International Conference on Concussion in Sport and a telephone interview with study personal confirming temporal association between hit to head and resulting symptoms [excluded if only symptom was brief headache],</td>
<td><strong>Athlete exposure hours (AEH)</strong>: total number of hours played by athletes, calculated from player minutes recorded by parent volunteers (n = 43,742 AEH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>351</strong> (out of <strong>422</strong> total) female youth soccer players aged 11-14 in Washington State from 27 teams</td>
<td><strong>59 concussions / 1.3 concussions per 1,000 AEHs / 13% average season incidence</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Number of concussions was divided by the total number of athlete exposure hours. Average season incidence was calculated from the total number of concussed athletes per season.</strong></td>
<td><strong>Trained parent volunteers were responsible for determining the denominator (total player hours) and graduate assistants/members of the study personal were responsible for collecting information on concussions and following up on the return to play.</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reported symptoms of light sensitivity, emotional lability, noise sensitivity, memory loss, nausea and concentration problems were all associated with longer recovery time. Rates were 22 times higher in games than practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


\(^{426}\) “[M]emory loss, difficulty concentrating, confusion or disorientation, dizziness, drowsiness, headache, more emotional than usual, irritability, losing consciousness, nausea, ringing in the ears, sensitivity to light or blurry vision, and sensitivity to noise.” From id. At 259.
| Emery et al. (2011)\(^{427}\) | Male youth ice hockey / 2008 – 2009 season | **Injury:** any injury incurred during hockey requiring medical attention or leading to time loss/ inability to complete season **Concussion** – “met the study definition of a reportable injury based on the therapist’s assessment and the Sport Concussion Assessment Tool (SCAT) and the definition of concussion based on consensus guidelines.”\(^{428}\) | 1,956 male and 15 female Bantam league (13 – 14 years old) ice hockey players in Alberta and Quebec, Canada: 995 with body checking experience, 976 without body checking experience | 100 concussions (48 players with experience with body checking, 42 players with no experience with body checking) / Experience: 0.79 concussions per 1,000 PH No experience: 0.91 concussions per 1,000 PH | Incidence rates were calculated based on incidence of concussion in the two different sub-groups (experience with body checking and no experience with body checking). This incidence was then divided by the player hours in that particular sub-group. | Prospective cohort study using an injury surveillance system involving four forms – preseason baseline questionnaire (with SCAT); body checking attitudes questionnaire; weekly game and practice participation form to determine exposure; and injury report form. Data was collected by team designate or therapist, and team therapists (physiotherapist, certified athletic therapist or senior athletic therapy student) | 25 players experienced concussions leading to more than 10 days of time loss. In total, 453 participants reported at least 1 prior concussion. |

---


428. Id. at 1250.
| Lincoln et al. (2011) | 6 high school boys' sports (football, lacrosse, wrestling, soccer, basketball, and baseball) and 6 high school girls' sports (field hockey, lacrosse, soccer, basketball, cheerleading, and softball) / 1997-1998 to 2007-2008 | Concussion: evaluated by the certified ATCs according to the Standardized Assessment of Concussion (SAC), and did not include loss of playing time as a necessary part of diagnosis | Athlete exposure (AE): one game or practice | 158,430 high school athletes (~ ages 14 – 19) at 25 large Fairfax county public schools / 10,926,892 athletic-exposures (AEs) | 2,651 concussions / 0.24 per 1,000 AEs | Concussion incidence rate was calculated based on concussions sustained per number of AEs | Data was collected by each school’s two part-time ATCs through 2005, after which each school had one full-time and one part-time trainer. The schools shared an electronic record-keeping system (Sports Injury Management Systems Software) which trainers uploaded information to daily | Over the 11-year study period, there was a 4.2 fold increase overall in concussion incidence rate; there was an approximately 15.5% annual increase in incidence rate. |

429. Andrew E. Lincoln, Shane V. Caswell, Jon L. Almquist, Reginald E. Dunn, Joseph B. Norris & Richard Y. Hinton, 
430. Michael McCrea, James P. Kelly, Christopher Randolph, Jon Kluge, Edward Bartolic, George Finn & Brian Baxter, 
431. [http://www.flantech.net/Products/SIMS](http://www.flantech.net/Products/SIMS)
### 2018| How Dangerous Are Youth Sports for the Brain?

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Emery et al.</td>
<td>Youth ice hockey / October 2007 – March 2008 season</td>
</tr>
</tbody>
</table>

**Concussion:** "met the study definition of a reportable injury based on the therapist’s assessment and the definition of concussion based on consensus guidelines."<sup>433</sup> <br>
**Injury:** any injury incurred during hockey requiring medical attention or leading to time loss/inability to complete season |

**Player hours (PH):** total time spent practicing and competing by players during the season, measured by team designate (n = 85,077) <br>
1,108 players from 74 Peewee (11 – 12 years old) teams in Alberta (body checking allowed) and 1,046 players from 76 Peewee (11 – 12 years old) teams from Quebec (body checking not allowed); in total, 183 teams were approached (162 accepted) <br>
78 concussions in Alberta <br>
23 concussions in Quebec <br>
1.47 concussions per 1,000 PH in Alberta <br>
0.39 concussions per 1,000 PH in Quebec <br>
Incidence rates were calculated in the two leagues based on the incidence of concussion in each region, divided by player hours in that region. <br>
Prospective cohort study using an injury surveillance system involving four forms – preseason baseline questionnaire (with SCAT); body checking attitudes questionnaire; weekly game and practice participation form to determine exposure; and injury report form. Data was collected by team designate, and study assigned team therapists (physiotherapist, certified athletic therapist or senior athletic therapy student) trained by |

Body checking leagues had approximately 3 times the risk of concussion as non-body checking leagues. 328 players self-reported a prior concussion. Having a prior concussion led to increased risk of sustaining a concussion of 2.14 times, and a 2.76 times increased risk of sustaining a severe concussion.

---


433. Id. at 2267.
| Shields & Smith (2009) | Organized cheerleading / 2006-2007 | **Concussion:** defined as a diagnosed concussion or closed head injury that required medical attention and prevented completion of an event or practice | **Athlete exposure (AE):** 1 cheerleader participating in 1 practice or event (e.g. football game) | 9,022 cheerleaders aged 3 to 29 from 412 US teams (113 All Star, 37 college, 180 high school, 39 middle school, 3 elementary school, and 40 recreation league) from 43 out of 50 states (803 officially enrolled; 243 completed, 173 partial, 387 failed to report data) | 23 concussions or closed head injuries (out of 565 total) | The authors do not report incidence rates, or divide based on age | Cheerleading RIO (similar to the HS RIO): participants were recruited using flyers/emails/etc. They trained designated team reporters (volunteers) in using the online software. | Collegiate cheerleaders had the highest injury rates, while recreation and middle school aged cheerleaders had the lowest injury rates. |

---

| Lincoln et al. (2007) | Girls’ and boys’ high school lacrosse / 2000 – 2003 seasons | Concussion: defined according to discretion of individual ATCs | Athlete exposure (AE): 1 athlete participating in 1 game or practice (n = 209,375 girls’ AE; n = 297,625 boys’ AE) | Boys’ and girls’ high school lacrosse players (n = 5,072 boys; n = 3,566 girls) at 23 public high schools in Fairfax County, Virginia | Boys: 83 concussions Girls: 45 concussions / Boys: 0.28 per 1,000 AE; Girls: 0.21 per 1,000 AE | Concussion incidence rates were calculated by the pooled incidence of concussion in boys and girls divided by the pooled number of games and practices, then multiplied by 1,000. | The authors used online data from ATCs, which reported it daily as part of their duties. There were two ATCs per school. Trainers used the Injury Tracking Treatment System supplemented by a lacrosse specific injury form. | Conussions comprised the largest proportion of all head, face and eye injuries; however, there were significant differences between boys and girls. 72.8% of head, face and eye injuries in boys were concussions, versus 39.5% of girls’ head, face and eye injuries. |
| Emery & Meeuwisse (2006) | Minor ice hockey / 2004 – 2005 season | Concussion: defined according to discretion of individual therapists or physician; combined with losing consciousness | Player hours (PH): total participation time across all players across season; missing or unreported weeks were replaced by mean of other | 986 players across 17 Atom teams (9 – 11 years old), 20 Peewee teams (11 – 13 years old), 16 Bantam teams (13 – 15 years old), and 18 | Atom: 3 concussions Peewee: 13 concussions Bantam: 17 concussions Midget: 21 concussions / | Incidence rate was calculated based on the incidence per division divided by the total player hours per each of the different divisions. | Descriptive epidemiology study implementing an injury surveillance system with 5 forms: “preseason medical form, a weekly exposure sheet (WES)” | Concussion was the largest specific injury type (~18% of injuries). Older players were more likely to suffer concussions and injuries than younger players. |


Injury: any injury incurred during hockey requiring medical attention or leading to time loss/inability to complete season

weeks; player time was classified as 100% or 75% participation (n = 71,727 PH [n = 12,526 Atom PH, n = 15,955 Pee wee PH, n = 17,552 Bantam PH, n = 25,694 Midget PH])

Midget teams (15 – 17 years old) all from Alberta, Canada [age range: 8 – 17]

Atom: 0.24 concussions per 1,000 PH  
Peewee: 0.81 concussions per 1,000 PH  
Bantam: 0.97 concussions per 1,000 PH  
Midget: 0.82 concussions per 1,000 PH

for the documentation of daily individual player participation, an individual injury report form (IRF) for collection of injury-related information, a therapist injury assessment form, and a physician diagnosis/treatment plan form. Injuries were evaluated by ATCs or candidates, and exposure was recorded by designated team personal. Injury reports were also filled out by physicians in some cases.

437. Id. at 1961.
Hinton et al. (2005)\(^{438}\)  

<table>
<thead>
<tr>
<th>High school and recreational boys’ and girls’ lacrosse / 1999 – 2001 seasons and summer camps</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Concussion:</strong> defined according to discretion of individual ATCs. <strong>Injury (high school):</strong> required attention from trainer due to injury during organized play and led to participation restriction for 1 or more days (including the day of the injury) <strong>Injury (summer camp):</strong> required attention from trainer due to injury during organized play</td>
</tr>
<tr>
<td><strong>Athlete exposure (AE):</strong> 1 athlete participating in 1 game or practice (n = 146,190 girls’ AE; n = 212,850 boys’ AE); Defined during summer camp play as 1 hour of game play or 2 hours of practice time (n = 20,331 boys’ AE, n = 7,987 girls’ AE)</td>
</tr>
<tr>
<td>Boys’ and girls’ high school lacrosse players (n = 3,870 boys’ player seasons; n = 2,658 girls’ player seasons) at 23 public high schools in Fairfax County, Virginia / 1,141 girls from 300 elite summer camps and 2,259 boys from 205 elite summer camps over the course of 1999, 2000, and 2001 [~15 – 18 years old]</td>
</tr>
<tr>
<td>High school – Boys: 61 concussions Girls: 14 concussions Summer camp – Boys: 7 concussions Girls: 1 concussions / High school – Boys: 0.29 concussions per 1,000 AEs Girls: 0.1 concussions per 1,000 AEs Summer camp – Boys: 0.24 concussions per 1,000 AEs Girls: 0.13 concussions per 1,000 AEs</td>
</tr>
<tr>
<td><strong>Incidence rates were calculated from incidence per gender and per situation, divided by total athlete exposures in that situation.</strong></td>
</tr>
<tr>
<td>The authors used online data from ATCs, which reported it daily as part of their duties. There were two ATCs per school. Trainers used the Injury Tracking Treatment System supplemented by a lacrosse specific injury form. For summer camp, there was one ATC present throughout.</td>
</tr>
<tr>
<td>Boys had approximately 3 times the concussion incidence rate (2.99 for high school, 2.75 for summer camp) as girls.</td>
</tr>
</tbody>
</table>

---

| Zemper (2003) | Male high school and collegiate varsity football / 1997–1998 seasons | Concussion: defined as “traumatically induced alteration in mental status” from the American Academy of Neurology (graded according to their guidelines of 1, 2 or 3) | Injury: injuries during practice/games leading to participation restriction of 1 or more days, as well as any head injury regardless of participation loss | Athlete exposure (AE): 1 athlete exposed to injury during 1 game or practice; based on weekly reports of participation by school certified ATCs (n = 475,589 high school AEs, n = 582,659 college AEs) | 56 high schools and 42 colleges during the 1997 season and 33 high schools and 42 colleges during the 1998 season (sampled from 4 geographic regions and across 3 collegiate divisions) | 572 concussions (240 high school, 332 college) / 0.54 concussions per 1,000 AEs (0.50 high school concussions per 1,000 AEs, 0.57 college concussions per 1,000 AEs) | Concussion incidence rate was calculated based on incidence of concussion in the population, divided by total athlete exposures during the study period for that population, multiplied by 1,000. | Data was taken from the Athletic Injury Monitoring System, which takes a stratified random sample of high school football teams based on geographic regions, including a criterion that the schools have an ATC. ATCs were asked how many athletes sustained concussions during the previous 5 years based on the medical history of individual players. Weekly responses were 98.5% for high school and 99.3% for college. | 53 out of 240 high school players sustaining a concussion during the study had sustained a prior concussion. 108 of 332 collegiate players sustaining a concussion during the study had a prior concussion. Having a prior concussion increased the risk of a subsequent concussion by 6.6 times for high school players, and by 5.3 times for collegiate players. More than 95% of concussions did not involve a loss of consciousness. |

---

440. Id. at 654.
441. “Grade 1 on the American Academy of Neurology scale indicates transient confusion that resolves in _15 min (the “bell ringer”); grade 2 indicates symptoms (transient confusion) that last longer than 15 min, but there is still no loss of consciousness; and grade 3 is used for any concussion involving loss of consciousness.” From Id. at 655.
442. [http://www.exra.org/98hpresumm.htm](http://www.exra.org/98hpresumm.htm)
2018] HOW DANGEROUS ARE YOUTH SPORTS FOR THE BRAIN? 159

| Powell & Barber-Foss (1999) | High school varsity boys’ football, wrestling, baseball and field hockey, girls’ volleyball and softball, boys’ and girls’ basketball, and boys’ and girls’ soccer / 1995-1996 through 1996-1997 academic years | *mTBI*: defined as a head-injured player who was removed from participation and evaluated by an ATC or physician [for a traumatic or head injury by the ATC, physician, or both,] prior to returning to participation. | *Athlete exposure (AE):* one game or practice | *Injuries:* “an incident that caused cessation of customary participation in the current session (game or practice) or on the day following the day of injury onset” | High school athletes (~14 – 19) / >4.4 million AEs / 23,566 injuries | 1,219 mTBIs (5.5% of injuries) / Football had the highest incidence rate (0.59 per 1,000 AEs), followed by girls’ soccer (0.23 per 1,000 AEs), wrestling (0.25 per 1,000 AEs), and boys’ soccer (0.18 per 1,000 AEs). | Data was normalized via an incidence density ratio, based on the injury rate per 1,000 athlete exposures | National Athletic Trainer Association (NATA) surveillance system – 246 certified ATCs recorded injury and exposure data for high school varsity athletes at 235 US high schools during one or more of the 1995-1997 academic years; drew from convenience sample of 350 volunteers with distribution across 50 states and variable enrollment matching overall U.S. school enrollment | 102 players experienced 2 mTBI during the study and most (n = 72) were football players; Authors calculated an overall, nationwide incidence of 62,816 mTBI across all sports in the U.S. based on nationwide player participation data |

444. Id. at 959.
445. Id. at 959.
<table>
<thead>
<tr>
<th>Kay et al. (2017)</th>
<th>Collegiate varsity men’s baseball, basketball, football, ice hockey, lacrosse, soccer, wrestling, cross-country, indoor and outdoor track/field, tennis, and swim/dive; and women’s basketball, field hockey, gymnastics, ice hockey, lacrosse, soccer, softball, volleyball, cross-country,</th>
<th><strong>Severe concussion:</strong> required 21 or more days of restricted participation, premature end to season, recovery beyond end of season and medical disqualifications</th>
<th><strong>Athlete exposure (AE):</strong> one game or practice</th>
<th><strong>Severe injuries:</strong> injuries that required 21 or more days of restricted participation, premature end to season, recovery beyond end of season and medical disqualifications</th>
<th>Collegiate varsity athletes (~18 – 23)</th>
<th>282 severe concussions / 8.9% of reported severe injuries</th>
<th>Incidence rate of severe concussion was calculated based on the total number of severe injuries reported and the number of AEs</th>
<th>National Collegiate Athletic Association (NCAA) Injury Surveillance System (ISS)</th>
<th>Most occurred in men’s football (n = 74, 6.8%), followed by men’s ice hockey (n = 70, 18.4%) and men’s wrestling (n = 30, 17.3%)</th>
<th>Similar proportions of diagnosis for males (9.4%, n = 90) and females (9.2%, n = 70)</th>
</tr>
</thead>
</table>

### Indoor and Outdoor Track/Field, Tennis, and Swim/Dive

#### Concussion:
- Diagnosed according to discretion of individual ATCs

#### Athlete exposure (AE):
- 1 athlete completing 1 competition or practice

#### Injury:
- Had to be the result of participation in an organized intercollegiate practice or contest;
- Injury required medical attention by a team certified

#### Varsity NCAA athletes (>18 – 23) across D1, D2 and D3 / >1,000,000 AEs

#### >9000 concussions reported (~3.753 per year) / 0.28 per 1,000 AEs

#### The authors calculated approximate number of concussions per year based on the assumption that their sample draws from about 15% of total NCAA institutions

#### Data was collected from the National Collegiate Athletic Association Injury Surveillance System (NCAA ISS) which collects standardized injury and exposure data from collegiate sports across Divisions I, II and III.

#### Majority of concussions occurred in football (55%), but women’s hockey had the highest incidence rate (0.91 per 1,000 AEs)

---


| Gessel et al. (2007) | NCAA boys' football, soccer, | Concussion: reported according to Athlete exposure (AE): 1 athlete | Varsity NCAA athletes (~18 – 482 concussions (5.8% of total injuries) Incidence rate was calculated based on total NCAA ISS Concussion rates were generally higher for college |
|---------------------|-----------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|

448. Id. at 311.
Basketball, wrestling, and baseball and girls’ soccer, volleyball, basketball, and softball / 2005-2006 academic year

| basketball, wrestling, and baseball and girls’ soccer, volleyball, basketball, and softball | practices of individual ATCs | completing 1 competition or practice | Injury: incident that fits following criteria: “(1) injury occurred as a result of participation in an organized intercollegiate practice or contest; (2) injury required medical attention by a team certified ATC or physician; and (3) injury resulted in restriction of the student-athlete’s participation or performance for one or more days beyond the 23) across D1, D2 and D3 / 8,293 reported injuries | / 0.42 concussions per 1,000 AEs | concussions divided by total AEs | sports than for high school sports, significantly so for all sports besides baseball; girls’ soccer had highest incidence rate, and overall males had higher incidence rate than females (1.74 vs 0.74 per 1,000 AEs) |

| Covassin, Swanik & Sachs (2003) | NCAA men’s football, ice hockey, wrestling, basketball, lacrosse, baseball, soccer and gymnastics as well as women’s lacrosse, soccer, baseball, softball, field hockey, volleyball and gymnastics / 1997-1998 through 1999-2000 | day of injury \(^{450}\) | Varsity NCAA athletes (~18 – 23) across D1, D2 and D3 / 40,457 reported injuries | 2,502 concussions (6.2% of all reported injuries) | Incidence rates for specific sports were calculated on an annual basis based on the number of AEs | Concussion incidence rate and incidence varied by year, by sport and by gender; in general, men’s football, ice hockey, wrestling, and men’s & women’s soccer, and lacrosse had the highest risks |

\(^{450}\) Taken from Hootman et al.’s (2007) description of reportable injuries for NCAA ISS.  
How dangerous are youth sports for the brain?

<table>
<thead>
<tr>
<th>academic years</th>
<th>participation or performance for one or more days beyond the day of injury</th>
<th>165</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand et al. (2015)</td>
<td>Girls’ soccer (comparison: other sports/activities)</td>
<td>?</td>
</tr>
<tr>
<td><strong>Concussion:</strong> self-reporting (via survey) one of the signs or symptoms of concussion following a blow to the head during soccer</td>
<td>Total number of players in sample (n = 195 soccer players; n = 147 control group)</td>
<td>195 female soccer players aged 11 to 13 in an organized soccer league in major metropolitan areas in several regions of the U.S. Control group: 147 youth participants able to regularly complete physical education class</td>
</tr>
<tr>
<td>94 (48% of total) soccer players reported probable concussions</td>
<td>34 (23% of total) control group reported probable concussions [2.09 times the relative risk]</td>
<td>Incidence was represented as a percentage of the total number of players reporting back using the survey, as well as the number of control group. In addition, the relative risk was just the percentage of soccer athletes reporting probable concussion divided by the number of the</td>
</tr>
<tr>
<td>Surveys were distributed to youth soccer players as well as youth athletes/individuals to serve as a control group (unclear total approached sample). They were asked to report on whether they had sustained a blow to the head leading to signs/symptoms of concussion during the previous season, and the last</td>
<td>Most players (84%) reported headache; other symptoms were reported in less than half of the players (38% balance problems, 19% ringing in ears, 12% sensitivity to light). Approximately 6% reported loss of consciousness.</td>
<td></td>
</tr>
</tbody>
</table>

452. Taken from Hootman et al.’s description of reportable injuries for NCAA ISS.


454. Headache, balance problems or dizziness, ringing in the ears, drowsiness or fatigue, sensitivity to light, nausea or vomiting, feeling of confusion, loss of memory, sensitivity to noise, sleeping more than usual, vision problems, to lose consciousness or to be knocked out, irritability, difficulty sleeping, or difficulty concentrating. From id. At 61.
| Register-Mihalik et al. (2013) | Varsity high school football, boys’ and girls’ lacrosse, boys’ and girls’ soccer, and cheerleading / November 2008 to February 2010 | Concussion: defined according to self-report via survey; had to occur during high school competition/practice | 167 varsity athletes responding to survey | 167 completed surveys (60.5% male) from 1,669 administered to varsity athletes from 28 high schools in 9 states | 44 athletes (26.3% of respondents) reported at least 1 previous concussion event [84 concussions total] | Incidence was reported as the number of athletes reporting concussion events, as well as the total number of concussion events reported by athletes. | Surveys were distributed to high schools across various states, who were then required to mail in the survey to the study administrators. This process may account for the low response rate (10%) | Athletes reported reporting about 50% of concussion events, and only 12.3% of bell-ringer events. Due to the open-ended nature of the questions, it is possible that athletes did not solely report SRC. |
| McCrea et al. (2004) | Varsity high school football | Concussion: “A concussion is a blow to the head” | Varsity male football athletes (n = 1,659) | 1,659 varsity football players in 20 high | 229 players reported at least one concussion | Incidence was determined based | Athletes completed two surveys, one pre-season and one | Only 47.3% of athletes who said they had a concussion reported any concussion. |


456. In your high school years, how many concussions do you think you have experienced?"; “In your high school years, how many times have you had your 'bell rung' or been 'dinged'?"?

| / 1999-2002 | followed by a variety of symptoms that may include any of the following: headache, dizziness, loss of balance, blurred vision, “seeing stars,” feeling in a fog or slowed down, memory problems, poor concentration, nausea, or throwing up. Getting “knocked out” or being unconscious does not always occur with a concussion. | schools in the Milwaukee, Wisconsin area | on the post-season survey (15.3% of respondents) / 505 participants reported prior history of concussion on pre-season; 458 participants reported prior history of concussion on post-season | on response of participants | post-season; both asked about prior history, and the second about those sustained during the season. The post-season survey also asked if/to whom the athletes had reported their concussion; they were also asked reasons for failing to report. | concussion during the season said that they reported it; probability of report was not tied to prior history of concussion. |


458. Id. at 17.

459. Athletes selected from the following list: “didn’t think it was serious enough, didn’t know it was a concussion, didn’t want to be pulled out of the game or practice, didn’t want to let down teammates, or other reason” Id. at 17.
<table>
<thead>
<tr>
<th>Study</th>
<th>Setting</th>
<th>Concussion Definition</th>
<th>Sample Size</th>
<th>Incidence Rate</th>
<th>Authors' Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langburt et al. (2001)</td>
<td>High school football / 1996-1997</td>
<td>Concussion: defined according to player self-report via survey based on the signs and symptoms of concussion following a head injury; these were based on the Cantu guidelines</td>
<td>233 (out of 450 distributed surveys) high school football players (~14 – 19) from Pennsylvania high schools in 2 large districts</td>
<td>110 players reported concussions Mean of 3.41 concussions per concussed athlete / 1,610 concussions per 1,000 athletes per season</td>
<td>The authors calculated the incidence rate per season by taking the number of reported concussions and dividing them by the total athletes.</td>
</tr>
<tr>
<td>Gerberich et al. (1983)</td>
<td>High school varsity football / 1977</td>
<td>Concussion: identification of concussion as a diagnosis during the previous season, or reporting a blow to the head leading to loss of consciousness</td>
<td>Minnesotan varsity high school players (n = 3,083)</td>
<td>3,083 (81% response rate) varsity male high school football players from Minnesota high schools (selected based on 3 strata: 74 concussions 507 players with loss of awareness/ consciousness / 190 concussions per 1,000 players</td>
<td>Incidence was calculated based on the total number of athletes reporting a concussion or a blow to the head followed by loss of consciousness/</td>
</tr>
</tbody>
</table>


461. The authors used exact phrasing from the Cantu guidelines for Grade I, II and III concussion, without directly using the word concussion; instead they specified head injuries with those symptoms.

| Kontos et al. (2016)\(^{463}\) | Competition level youth ice hockey / 2012 – 2014 | **Concussion:** medically diagnosed by a licensed medical professional | **Athlete exposure (AE):** 1 athlete completing 1 competition or practice (n = 23,369) | 401 of 449 youth ice hockey players aged 12 – 18 from three states (Western Pennsylvania; Boston, Massachusetts; Birmingham, Alabama) and 31 teams (11 high school, 10 midget, 7 bantam, 3 peewee); 330 boys | 37 concussions / 1.58 concussions per 1,000 AEs (2.46 per 1,000 game AEs and 1.17 per 1,000 practice AEs) | Incidence rate was calculated based on total reported concussions divided by total AEs | All games and practices had licensed medical professionals present, and only concussions officially diagnosed by a medical professional were included. Exposure was recorded by team volunteers who were contacted 2 to 3 times a week regarding | 105 of 397 participants who completed demographic information reported a prior concussion; younger players (12-14) had 2.4 times higher incidence rate than older players (15-18) |

Participant exclusion criteria included history of brain surgery, moderate or severe TBI, neurologic/psychiatric disorder, and current or recent (last 6 months) concussion.  

<table>
<thead>
<tr>
<th>Study</th>
<th>Setting</th>
<th>Concussion: defined</th>
<th>Athlete-exposures (AE):</th>
<th>Incidence rate was calculated from the total number of athlete exposures, as well as within each type of exposure (e.g., practice versus game)</th>
<th>Suspected concussions^464</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGuine et al. (2014)^465</td>
<td>High school football / 2012 and 2013 seasons</td>
<td>Concussion: defined according to the American Academy of Neurology definition^466 and evaluated to the discretion of the individual ATC with or without the help of a physician’s diagnosis</td>
<td>2,081 players (206 in both seasons) from Wisconsin high schools (n = 34 [2012]; n = 18 [2013]) participated in the study. Almost half were varsity, although all players were eligible (freshman, JV and varsity) [aged ~14 – 18]</td>
<td>211 SRC (across 206 players [9% of total players]) / 1.56 per 1,000 AEs Competition: 5.81 per 1,000 competition AEs Practice: 0.76 per 1,000 practice AEs</td>
<td>There was an increased risk (2 times higher) amongst players who reported a SRC within the past 12 months. There was no correlation with other information measured.</td>
</tr>
<tr>
<td>Kontos et al. (2013)^467</td>
<td>Youth football</td>
<td>Concussion: operationalized</td>
<td>571 (82% participation)</td>
<td>Incidence rates were calculated During the course of a season, 11–12 year olds (incidence rate: 2.53)</td>
<td></td>
</tr>
</tbody>
</table>

---

464. Participant exclusion criteria included history of brain surgery, moderate or severe TBI, neurologic/psychiatric disorder, and current or recent (last 6 month) concussion.


466. “[A]n injury resulting from a blow to the head or other applied forces (linear or rotational) causing an alteration in mental status and 1 or more of the following symptoms: headache, nausea, vomiting, dizziness/balance problems, fatigue, difficulty sleeping, drowsiness, sensitivity to light/noise, blurred vision, memory difficulty, and difficulty concentrating.” From id.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Concussion Definition</th>
<th>Player Seasons</th>
<th>Player Exposure</th>
<th>Concussions</th>
<th>Incidence Rate</th>
<th>Recovery Time</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1 athlete participating in 1 game or 1 practice; a trained team reported tracked athlete exposures for players on their team (n = 11,338 AEs)</td>
<td>18,531 player-seasons from 3 parallel multi-center studies; included 570 concussed athletes (n = and 166 control athletes (n = 275)</td>
<td>No incidence or incidence rate was directly reported</td>
<td>During the study, athletes underwent outcome measures on the sideline immediately post-injury, 2 to 3 hours later, throughout the first week post-injury</td>
<td>The strongest associated factors with prolonged recovery were loss of consciousness, post-traumatic amnesia, retrograde amnesia and general symptom severity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


469. Outcome measures: Graded Symptom Checklist; Standardized Assessment of Concussion; Balance Error Scoring System; Hopkins Verbal Learning Test; Trail-Making Test-B;
| Meyers & Barnhill (2004) | Boys’ varsity high school football / 1998 – 2002 seasons | Injury: any injury leading to missing part/all of a game, time out of competing, ATC/physician | Team game: 1 team game (n = 240 team games; n = 90 games on natural grass, n = 8 varsity football teams from 8 Texas high schools (minimum 900 students); 4 participated for 8 concussions (1 athlete suffered from second impact syndrome). | Concussion incidence rate was calculated by grouping all of the grades of concussion on a field type and an injury surveillance form was distributed to the certified ATCs at each of the schools, who were present at all team evaluations. An injury surveillance form was distributed to the certified ATCs at each of the schools. | Concussions constituted only 4.4% of all FieldTurf injuries, versus 12.8% of injuries on natural grass. |

Stroop Color Word and Symbol Digit Modalities Test

reported or treated, and any reported cranial/cervical trauma (classified further into minor, substantial and severe based on time loss of participation). *Concussion:* evaluated according to discretion of onsite certified ATCs and team physicians (graded as either 1, 2 or 3).

Field et al. (2003)\(^{471}\)

<table>
<thead>
<tr>
<th><strong>Men’s high school and NCAA football, men’s high school soccer, women’s</strong></th>
<th><strong>College male football players (n = 370) and female soccer players (n = 23) from 4 Division 1A programs and varsity male</strong></th>
<th><strong>Participants in Concussion Safety Program: college male football players (n = 370) and female soccer</strong></th>
<th><strong>Incidence calculated based on total reported concussions</strong></th>
<th><strong>Concussions were scored with the AAN Practice Parameter. Athletes who suffered concussions were referred for</strong></th>
<th><strong>About 53.7% of the sample reported at least one prior concussion; collegiate athletes were more likely to have had a previous concussions and</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field et al. (2003)(^{471})</td>
<td>Men’s high school and NCAA football, men’s high school soccer, women’s</td>
<td>College male football players (n = 370) and female soccer players (n = 23) from 4 Division 1A programs and varsity male</td>
<td>Participants in Concussion Safety Program: college male football players (n = 370) and female soccer</td>
<td>Incidence calculated based on total reported concussions</td>
<td>Concussions were scored with the AAN Practice Parameter. Athletes who suffered concussions were referred for</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Study</th>
<th>Concussion Type</th>
<th>Participants</th>
<th>Evaluation</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCAA soccer / 1997-1998 through 2000-2001 academic years</td>
<td>(AAN) Practice Parameter</td>
<td>football players (n = 161) and varsity male soccer players (n = 22) from 5 high schools in Shiawassee County, Michigan, High school (14 – 18); college (17 – 25)</td>
<td>neurophysiological evaluation within 24 hours, which was followed up 3, 5 and 7 days post-injury. These subjects were matched with an appropriate control from the baseline condition, based on sport, age, high school GPA/college board examination scores, history of diagnosed learning disability and history of previous concussion.</td>
<td>high school players took longer to recover from symptoms (compared to normal controls).</td>
</tr>
<tr>
<td>Marshall &amp; Spencer (2001)</td>
<td>Boys' high school rugby / 1998 – 2000 seasons</td>
<td>Concussion: concussions were graded based on the Cantu scale, and diagnosed with a team physician</td>
<td>2 boys' varsity rugby teams from a Utah high school</td>
<td>Incidence rate was calculated from the total incidence of concussion, divided by the total athlete-exposure (AE): 1 athlete participating in 1 practice or 1 game (recorded separately). The authors used data from a computer database run by Spencer, who is the certified ATC at the rugby program. The 25.3% of participation days lost were due to concussions. There were 14 Cantu Grade 1, 2 Cantu Grade 2, and 2 Cantu Grade 3 concussions.</td>
</tr>
</tbody>
</table>

and the study author who is a certified ATC. 

**Injury:** any injury leading to time loss from games/practices, all fractures, and all concussions are maintained in the database. 

<table>
<thead>
<tr>
<th>Year</th>
<th>Study Details</th>
<th>Concussion Definition</th>
<th>Athlete Exposure</th>
<th>Total Athlete Exposures</th>
<th>Database Information</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Guskiewicz et al.</td>
<td>Defined as head injury with immediate post-traumatic neural impairment (e.g. blurred vision, alteration of consciousness, etc.); graded according to Cantu guidelines.</td>
<td>1 athlete participating in 1 game or practice; this was calculated from a sub-sample of 45 schools matching the size/divisions/levels.</td>
<td>1,003 total concussions (400 high school concussions (n = 343 concussed athletes [5.6%]) / 0.7 concussions per 1,000 AEs overall; High school: 1.03 concussions per 1,000 total AEs.</td>
<td>The database also maintains exposure data (practice and game information). The program has a medical staff and specifically a team physician that aided Spencer with diagnosis and recognition of injuries and concussions.</td>
<td>Grade 2 and 1 Cantu Grade 3.</td>
</tr>
</tbody>
</table>

---

Youth Ice Hockey Tournament Injuries: Rates and Patterns Compared to Season Play

| Boys’ and girls’ ice hockey / 1993 – 1994 winter season | Concussion: defined according to individual ATC, and required at minimum cessation from game to seek treatment | Player hours (PH): time during game, calculated from 12 players on the ice, and 80% of total time clock ran and 100% of stop time (not adjusted for penalties) | 695 boys and 112 girls, ages 11-19, in 5 Minnesota community-sponsored ice hockey tournaments. Boy players were from peewee (12 – 13 years old), bantam (14 – 15 years old), high school (15 – 19 years old), and Junior Gold levels (15 – 19 years old). Girl players were peewee A and B (12 – 15 years old). | 1.63 concussions per 1,000 contact AEs | 9 boys’ concussions (15%, out of 64 total injuries) / 17.6 boys’ concussions per 1,000 PH | Incidence rate was calculated using number of concussions sustained overall divided by the total player hours; individual incidence rates were calculated for the four different levels of boys’ hockey. | A certified ATC prospectively recorded injury reports, with collection by a graduate assistant to the study. This assistant also performed follow up to injuries by phone. | The incidence rate of concussions varied depending on the level of play; highest in peewee (23.1 concussions per 1,000 PH), followed by Junior Gold (18.7 per 1,000 PH) and high school (18.5 per 1,000 PH), and finally bantam (10.7 per 1,000 PH). 5 out of 9 players returned to play the same game, 1 was brought to the ED due to concerns about the cervical spine. He was cleared to play the next day. |

Roberts, Brust & Leonard (1999)\textsuperscript{475}  

<table>
<thead>
<tr>
<th>Messina, Farney &amp; DeLee (1997)&lt;sup&gt;476&lt;/sup&gt;</th>
<th>Boys’ and girls’ varsity high school basketball / 1996 – 1997 season</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Concussion:</strong> operationalized by a checkbox on a sheet of specific injuries; diagnosed according to discretion of certified ATC with or a medical professional.</td>
<td><strong>Injury:</strong> any injury during game/practice leading to loss of time (partial or full) from a game/practice, any physician-treated injuries, and any reported head/face injuries.</td>
</tr>
<tr>
<td><strong>Hour of exposure:</strong> 1 hour of 1 athlete participating in 1 game or practice; calculated from the number of practices per week times average practice duration, plus number of_games per week times average game duration, all multiplied by number of athletes [calculated separately for male and female athletes; n = 169,885 for boys, n = 120,751 for girls]</td>
<td><strong>Male (n = 973 athletes) varsity high school basketball players from 75 Texas public schools and female (n = 890 athletes) varsity high school basketball players from 71 Texas high schools [both out of 100 sampled schools with more than 740 students] [aged ~14 – 18 years]</strong></td>
</tr>
</tbody>
</table>
| Boys: 11 concussions (2% of 543 total injuries)  
Girls: 8 concussions (2% of 436 total injuries) | Boys: 3.2 total injuries per 1,000 hours  
Girls: 3.6 total injuries per 1,000 hours [no reported concussion incidence rate] |
| No concussion incidence rate was reported. The injury incidence rate was taken by dividing the total number of injuries sustained by each gender by the total number of hours of exposure for that gender. | State certified ATCs present at each of the practices and games of the football season were tasked with recording information on an injury report form for each injury that occurred. This was performed using a pegboard, then transferred to a weekly master sheet which was mailed to the study authors for electronic entry. |
| Little concussion specific incidence rate was given. |

---

Male ice hockey / 1994

<table>
<thead>
<tr>
<th>Concussion: required ATC assistance and time loss from competition (no requirement of full game time loss)</th>
<th>Player-game hours: number of hours competing total ( n = 213.9 ) hours</th>
<th>Male Minnesota high school hockey players in Junior Gold ice hockey tournament</th>
<th>4 concussions / 18.7 per 1,000 player-game hours 3.6 per 1,000 AEs</th>
<th>Incidence rate was calculated from the total number of concussions reported divided by the total hours played by all participants or the total number of AEs or player game hours.</th>
<th>The study used injury reports from certified ATCs, supplemented with reports from a trained independent observer and reports from 5 randomly selected players on each team. ATCs filled out injury reports, and athletes were followed up with by a member of the study team to evaluate severity.</th>
</tr>
</thead>
</table>
| Lindenfield et al. (1994)

Indoor soccer / ? year

| Injury: defined as “injured” if the player left game due to injury, led to play stop by referee or player. | Player-hours: calculated from total number of games observed times 12 players times 0.75; all hours were | Indoor recreational soccer players aged 7 to early 50s in Ohio. Skill level ranged from 2 concussions (unclear age group) / 1.3 per 1,000 player game hours | Incidence rate calculated by dividing total count of injuries observed by the total player game hours (per 100) | Certified on-field examiners (medical doctor, physical therapist, or ATC) recorded injuries. The study recorded data for a | In terms of injury rate, men 25 and older suffered the highest rate of injuries. |

---

or led to requested medical attention. Specific injuries were diagnosed by the on-field medical examiner according to individual discretion.

<table>
<thead>
<tr>
<th>Injury</th>
<th>Athlete-exposure (AE): 86 varsity high school football teams (out of initial 100) in Texas (all schools had at least 740 enrolled students); n = 4,399 student-athlete game/practice hours) / 3 injuries per 1,000 hour of exposure [no reported incidence of concussion]</th>
<th>Player game hours); this was then performed for specific subgroups (e.g. by age, sex, etc.). The incidence rate calculation for concussions was performed by Koh et al. according to supplementary data from the study authors, not reported in the original study.</th>
<th>7 week period that included 2 separate seasons, neither in their entirety.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury: any injury during game/practice leading to loss of time (partial or full) from a game/practice, any physician-treated injuries,</td>
<td>101 concussions (5% of 2,228 total injuries)</td>
<td>The rate of injury was calculated from the total incidence of injury divided by the total hours of exposure by each student-athlete. No incidence of State certified ATCs present at each of the practices and games of the football season were tasked with recording information on an injury report form</td>
<td>There were 137 injuries that required hospitalization, but it is not clear if any are concussions.</td>
</tr>
</tbody>
</table>

DeLee & Farney (1992) 480

Male varsity high school football / 1989 football season

<table>
<thead>
<tr>
<th>DeLee &amp; Farney (1992) 480</th>
<th>Male varsity high school football / 1989 football season</th>
<th>Injury: any injury during game/practice leading to loss of time (partial or full) from a game/practice, any physician-treated injuries,</th>
<th>Injury: any injury during game/practice leading to loss of time (partial or full) from a game/practice, any physician-treated injuries,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury: any injury during game/practice leading to loss of time (partial or full) from a game/practice, any physician-treated injuries,</td>
<td>101 concussions (5% of 2,228 total injuries)</td>
<td>The rate of injury was calculated from the total incidence of injury divided by the total hours of exposure by each student-athlete. No incidence of State certified ATCs present at each of the practices and games of the football season were tasked with recording information on an injury report form</td>
<td>There were 137 injuries that required hospitalization, but it is not clear if any are concussions.</td>
</tr>
</tbody>
</table>

Cited by 151.
and any reported head injuries  
*Concussion* – operationalized by a checkbox on a sheet of specific injuries; diagnosed according to discretion of certified ATC with or without input from physician

<table>
<thead>
<tr>
<th>Hour of exposure: 1 hour spent participating in 1 game or practice by 1 student-athlete; calculated from average of trainer reported practice and game lengths (n = 2,156.7 game hours, n = 11,869.76 practice hours)</th>
<th>athletes [~15 – 18 years old]</th>
<th>concussion was given.</th>
<th>for each injury that occurred. This was performed using a pegboard, then transferred to a weekly master sheet which was mailed to the study authors for electronic entry. There was 75.5% participation (874 out of 1,161 weekly reports returned).</th>
</tr>
</thead>
</table>
| Athlete exposure (AE): one game or practice (“every player plays” policy)  
*Injury*: any event that brings a player off the field, brings any staff/coaching |
| 1.659 children aged 7 to 13 across 47 boys’ baseball teams (n = 270), 29 girls’ softball teams (n = 391), 40 boys’ and girls’ soccer teams (n = 482), and 9 boys’ football |
| 2 officially diagnosed concussions (emergency department)  
3% of specific injuries reported were concussions |

Radelet et al. (2002)[481]  
Community organized youth baseball, softball, football, and boys’ and girls’ soccer  
1999-2000 season  
No explicit definition of concussion was given.

---


| Faude et al. (2017) | Male and female youth soccer / 2012 – 2015 (3 seasons) | *Concussion*: diagnosed according to discretion of coaches and/or parents, or medically diagnosed by a physician | *Player hour* (PH): 1 player participating in 1 hour of game or practice; recorded by designated contact person in terms of presence or absence from scheduled event (n = 688,045 hours [n = 18,586 female PH]) | Male and female (<4% of sample) youth soccer players aged 7 to 12 years completing 9,933 (n = 394 girls’) player seasons in Switzerland, Czech Republic, Germany and the Netherlands | 11 concussions (7 medically diagnosed) out of 791 total injuries / 0.02 concussions per 1,000 PH | Concussion incidence rate was calculated overall, by dividing the total concussion incidence by the total number of player hours across all age groups. Since no concussions occurred in the under-9 age group, this means that the reported incidence rate is | Data collection was performed by a contact person in a club, usually a coach, who had access to an online injury record platform. Data collected included weekly practices, matches and player absence; injury information was recorded when it occurred. The contact person received detailed instructions | There were no concussions recorded in the under-9 age group. There was 1 female concussion, and 1 re-injury with a subsequent concussion in the same player, during the study. In addition, the small number of concussions makes it difficult to compare between age groups. |
| McIntosh et al. (2010)\(^{483}\) | Male rugby union football | **Concussion:** symptom based operational | **Game hours:** hours spent competing by | 1,159 male youth rugby players under | 199 concussions (out of 1,841 total injuries) | Incidence rates were calculated based on number | Trained university students recorded playing time for | Concussion rates peaked in the U-18 age group; 9.32 per

---

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Concussion:</strong> medically verified concussion (unclear what limits of diagnosis)</td>
<td><strong>Athlete exposure (AE):</strong> one game played by one player; determined based on reports from team recording officers of</td>
</tr>
<tr>
<td><strong>Incidence rate based on pooled concussions divided by total number of AEs, times 1,000</strong></td>
<td><strong>Data was collected by a team nominated “team recording officer” to record player participation, injury details, and head gear use for games. The study authors also</strong></td>
</tr>
<tr>
<td><strong>9 concussions / 5.86 per 1,000 AEs</strong></td>
<td><strong>The study composed two sub-groups, one group of 9 teams with head gear and one group of 7 teams without. There was no significant difference in concussion rates</strong></td>
</tr>
<tr>
<td><strong>294 male youth rugby players from 16 under 15 teams in metropolitan Sydney, Australia and surrounding region during the course of 1 season</strong></td>
<td><strong>1,000 game injuries and 2.28 missed game injuries per 1,000 game hours. These figures were taken from their supplementary material.</strong></td>
</tr>
<tr>
<td><strong>20 years old (~12-20) in New South Wales / (n = 82 teams for 2002, n = 87 teams for 2003)</strong></td>
<td><strong>Each player during competitions only, reason for leaving the field or the reason for absence from the game on a standard form. It contained defined fields for injured body region, nature/cause of injury, player details, concussion descriptors and whether the player was sent to the hospital.</strong></td>
</tr>
<tr>
<td><strong>of concussions divided by number of recorded game hours.</strong></td>
<td><strong>1,9 missed game injuries per 1,000 game hours</strong></td>
</tr>
<tr>
<td><strong>20 years old (~12-20) in New South Wales / (n = 82 teams for 2002, n = 87 teams for 2003)</strong></td>
<td><strong>6.9 game injury concussions per 1,000 game hours; 1.9 missed game injuries per 1,000 game hours.</strong></td>
</tr>
<tr>
<td><strong>20 years old (~12-20) in New South Wales / (n = 82 teams for 2002, n = 87 teams for 2003)</strong></td>
<td><strong>Each player during competitions only, reason for leaving the field or the reason for absence from the game on a standard form. It contained defined fields for injured body region, nature/cause of injury, player details, concussion descriptors and whether the player was sent to the hospital.</strong></td>
</tr>
<tr>
<td><strong>20 years old (~12-20) in New South Wales / (n = 82 teams for 2002, n = 87 teams for 2003)</strong></td>
<td><strong>6.9 game injury concussions per 1,000 game hours; 1.9 missed game injuries per 1,000 game hours.</strong></td>
</tr>
</tbody>
</table>


| Bryan et al. (2016)\(^{485}\) | Sports and recreation related /2013 | **Sports and recreation related concussions**<br>MarketScan: ICD-9-CM\(^{486}\) codes excluding those for motor vehicle collisions, falls, and additional 15% NEISS: concussion code in conjunction with any sport, recreation | All children under the age of 18 in United States—based on 2013 population of the United States | Youth aged 18 and younger from 3 national databases (NEISS, MarketScan [n = 11,533,618], High School RIO) | 377,978 outpatient visits, between 2,886 and 4,936 inpatient hospitalizations, between 115,479 and 166,929 ED visits and 73,002 ATC visits by the RIO / 0.04 to 0.06 hospitalizations and 1.48 to 2.14 | Incidence rates were calculated based on NEISS and MarketScan counts, total estimated concussion incidence rate for children was based off of counts from the various databases, plus estimated values of non-report from the literature | Data was retrospectively collected from 3 national databases concerning the 2013 year. | Numbers for non-medically attended concussions are likely not accurate, or at least more variable. The authors used values from very specific, small scale non-report studies due to the lack of nationally representative studies in this area. |

---


486.  International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) is an official system of designing codes to diagnoses and procedures put out by the World Health Organization ([https://www.cdc.gov/nchs/icd/icc9cm.htm](https://www.cdc.gov/nchs/icd/icc9cm.htm)); codes are based off of cause and severity of injury amongst other factors.
**2018] HOW DANGEROUS ARE YOUTH SPORTS FOR THE BRAIN?  185**

| Selassie et al. (2013)\(^{487}\) | Sports and recreation related / 1988 through 2011 | **TBI**: E-codes 800–801, 803–804, 850–854, and 959.01, from the ICD-9\(^{488}\)  
Concussion: E-code 850.* | TBI cases at all 65 nonfederal hospitals and 67 civilian emergency department in South Carolina (n = 275,613) | Emergency department cases of sports-related TBI in South Carolina (n = 16,642) | 10,191 cases of sports-related TBI for 0 – 18 year olds (61.3% of total sports-related TBI)  
/ Incidence rate of 1.206 sports-related TBI per 1,000 for 12-18 year olds; 0.61 sports-related TBI per 1,000 sports for 6-11 year olds | Incidence rate were calculated from the count per age-group adjusted to the total population of South Carolina in that specific age group. | Prospective surveillance system in South Carolina\(^{489}\) | 18.2% of severe TBI were a repetitive TBI, although only 6.1% of TBI were repetitive cases. 80% of the repetitive sport-TBI cases were 25 years old or younger. |

---


\(^{488}\) International Classification of Disease, 9th Revision (ICD-9) is an official system of designing codes to diagnoses and procedures put out by the World Health Organization ([https://www.cdc.gov/nchs/icd/icd9cm.htm](https://www.cdc.gov/nchs/icd/icd9cm.htm)); codes are based off of cause and severity of injury amongst other factors

\(^{489}\) [http://academicedepartments.musc.edu/setbfr/survey.htm](http://academicedepartments.musc.edu/setbfr/survey.htm)
| Theadom et al. (2014) | Sports-related activities \(^{490}\) / March 1st, 2010 through February 28th, 2011 | TBI: from World Health Organization: “an acute head injury resulting from mechanical injury to the head from external forces.” \(^{492}\) | Population of 1 rural district and 1 urban district in New Zealand (n = 173,214) | Total population of the districts (n = 173,214) | 291 cases of sports-related TBI; 114 sports-related concussion in under-16 year olds / Incidence rate of 1.7 per 1,00 population | Incidence calculations were based on New Zealand census data and, for specific sports, on data from the Sport and Recreation Participation Levels in New Zealand report. | Evaluated sports-related traumatic brain injury (TBI) incidence and severity in New Zealand as part of a wider TBI surveillance study, including medically admitted TBI as well as self-report; all were checked with records and interview were conducted when possible. | Children under 18 account for over half of sports-related TBI (51%), and those under 16 account for 39% of all sports-related TBI (n = 114) |

---


\(^{491}\) “1) purpose of competition/pleasure involving physical exertion and skill; 2) may follow rules or require the use of specific equipment; 3) excludes physical activities such as walking, gardening, cycling as means of transportation or playing on play-ground equipment.” From Theadom, Alice, Nicola J. Starkey, Tony Dowell, Patria A. Hume, Michael Kahan, Kathryn McPherson, Valery Feigin, and BIONIC Research Group. “Sports-related brain injury in the general population: an epidemiological study.” *Journal of science and medicine in sport* 17, no. 6 (2014): 591-596. Cited by 12. At 592.

### How Dangerous Are Youth Sports for the Brain?

<table>
<thead>
<tr>
<th>McKinlay et al. (2008)</th>
<th>Sports-related TBI, rugby</th>
<th>TBI: operationalized via parental recall of official GP or specialist visits until age 16, then self-report was also allowed. Only included cases where medical treatment was sought and minimum diagnosis of concussion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth cohort of 1,265 children</td>
<td>Surviving children from birth cohort (n = 1,003) at 25 years of age. Total of 458 head injuries</td>
<td>19 sports-related TBI from 0 – 14 years; 64 sports-related TBI from 15 – 25 years (n = 49 for rugby). 23.6 TBI per 1,000 children for 15 – 20 year olds.</td>
</tr>
<tr>
<td>Incidence rates were calculated based on the count of TBI sustained during the particular span of years, divided by the total number of children.</td>
<td>Prospective birth cohort study with participants assessed at birth, 4 months, 1 year, annual intervals to age 16 years, and at ages 18, 21 and 25 years using parental interview, self-report, psychometric assessments, teacher questionnaire, medical records and other official record data.</td>
<td></td>
</tr>
<tr>
<td>226 individuals sustained 1 concussion, 71 sustained 2 concussions, 14 sustained 3 concussions, 4 sustained 4 concussions and 3 sustained more than 4. Trends also indicate that males become more likely to experience a TBI than females after age 5, particularly TBI requiring inpatient admission; there were approximately equal proportions of males and females in the study. By age 25, 38.47% of males had experience a TBI, versus 24.4% of females.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annegers et al. (1980)</td>
<td>1935 – 1974</td>
<td>Head trauma with evidence of brain involvement: head injury with loss of consciousness, posttraumatic amnesia, or skull fracture (used diagnostic codes, but unclear which ones)</td>
</tr>
<tr>
<td>Population of U.S., based on 1970 census</td>
<td>Head trauma cases in Olmstead County presenting to medical services with diagnosis of head trauma</td>
<td>1965 – 1974: 1,626 cases 1935 – 1974: 3,587 Recreation-related: 333 (9.4%) / 1965 – 1974: M: 0.33 per 1,00 population [highest incidence rate in 15 – 24 age group] F: 0.09 per 1,00 population [highest incidence rate in 5 – 14 age group]</td>
</tr>
<tr>
<td>Age adjusted rates of incidence were calculated based on the population of Olmstead County</td>
<td>The authors used medical records from the Rochester Project at the Mayo Clinic and reviewed medical records and fatality records of Olmstead County residents between 1935 and 1974.</td>
<td></td>
</tr>
<tr>
<td>Evidence of increasing sports and recreation-related incidence rates (as well as motor vehicle), while other mechanisms remained stable over the study period. Incidence rates overall increased progressively each decade – per 100,000 males, rates were 117, 215, 221 and 270; per 100,000 females, rates were 46, 82, 88 and 116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williamson &amp; Goodman (2006)</td>
<td>Male and female youth ice hockey</td>
<td>Official injury reports: league defined explicit 1 season / Males’ age divisions pee-wee (11 – 12), bantam (13 – 14) Male: 60 concussions Female: 7 concussions Calculated incidence based on an assumption that all</td>
</tr>
<tr>
<td>Data collection from official records, performed by British</td>
<td>Official records were significantly lower than both direct observation</td>
<td></td>
</tr>
</tbody>
</table>

2003–2004 season | concussion reports | **Athletic exposure (AE):**
1 game 
Player Game Hours (PGH): 1 player playing 1 hour of a game
14), and midget 
(15 – 17), as well as 
females’ aged 
12 – 19 
[males (n = 19,548); 
females (n = 5,017)] in 
British 
Columbia | / Males: 0.06 – 0.15 
concussions per 
1,000 AEs, or 
0.25 – 0.61 
concussions per 
1,000 PGH | concussion occurred during 
games, and 
estimated player 
hours and player 
exposures based 
on minimum and 
maximum games 
per age group 
and level, each 
with 0.25 of 
played hours per 
player | Columbia Amateur 
Hockey 
Association of 
Hockey Canada | and athlete self-
report

Male and 
female youth 
hee hockey/
2002–2003 season | **Direction observation:**
“head incidents 
of concern”, i.e. 
physician 
diagnosed 
concussion, or 
episode seriously 
indicative of 
concussion 
based on 
observed signs 
or symptoms | 3.5 months

/ **Athletic exposure (AE):**
1 game 
Player Game Hours (PGH): 1 player playing 1 hour of a game
792 players 
across pee-wee, 
bantam and 
midget 
divisions in 
British 
Columbia | 22 concussions 
or incidents of 
concern 
/ 1.11 – 1.98 per 
1,000 AEs, or 
4.44 – 7.94 per 
1,000 PGHs | 44 team volunteers 
(coaches, managers 
or safety personal) 
reported physician 
diagnosed 
concussion, or 
episode seriously 
indicative of 
concussion based 
on observed signs 
or symptoms
| **Male and female youth ice hockey players**  
| Recreational (2004) | **Self-report:** hockey induced hit to the head inducing signs or symptoms of a concussion (only included current and directly prior season) | 2 seasons  
| *Athletic exposure (AE)* – 1 game  
| *Player Game Hours (PGH)* – 1 player playing 1 hour of a game | 107 players across peewee, bantam, and midget age divisions in British Columbia | 26 concussions/incidents of concern  
| /  
| 2.43 – 6.07 concussions per 1,000 AEs, or 9.72 – 24.3 concussions per 1,000 PGH | **Self-report questionnaires:** players were asked to report any hockey induced hit to the head inducing signs or symptoms of a concussion; only those from the current and prior seasons were included in analysis | ---

| Elite male (n = 475) and elite female (n = 309) in British Columbia | M: 79 concussions/incidents of concern  
| F: 69 concussions/incidents of concern  
| /  
| M: 1.66 – 2.08 per 1,000 AEs and 6.65 – 8.32 per 1,000 PGH  
| F: 2.23 – 2.79 per 1,000 AEs and 8.93 – 11.17 per 1,000 PGH | --- | --- |
### Table 1: Head Injury Incidence and Hospitalization Rates

<table>
<thead>
<tr>
<th>Author</th>
<th>Year Range</th>
<th>Definition of Head Injury</th>
<th>Population</th>
<th>Annual Head Injuries</th>
<th>Annual Hospitalizations</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Fife</td>
<td>1977–1981</td>
<td>Head injury: included skull fracture or damage to the cranial contents (ICD codes 800.0-801.9, 803.0-803.9, and 850.0-854.9)</td>
<td>Population of the United States</td>
<td>Approximately 200,000 families surveyed during the 1977–81 years of the National Health Interview Survey; includes all ages</td>
<td>Estimated 1.87 million annual head injuries Estimated 307,000 hospitalizations annually for head injury</td>
<td>Used data from the National Health Interview Survey, which collects information on injuries occurring during the previous two weeks of the interview of currently living household members (excluding institutionalized or military). The authors pooled the data from 5 years (1977 – 1981)</td>
</tr>
</tbody>
</table>

It is less likely for children, individuals from low-income families, and those injured in home, recreation or school setting to be hospitalized.

---