Affirmative Action and Stereotypes in Higher Education Admissions

Prasad Krishnamurthy1 Aaron Edlin2

1U.C. Berkeley Law School
2U.C. Berkeley Law School
U.C. Berkeley Department of Economics
National Bureau of Economic Research

Berkeley Law & Economics Workshop
Oct. 2014
1 Motivation

2 Stereotypes and Admissions
 - A Simple Model of Admissions
 - An ACT Example
 - Eliminating Stereotypes

3 Other Values in Admissions
 - Equal Treatment
 - Equal Treatment, and Equal Representation

4 Other Stereotypes
Critiques of Affirmative Action:

- Harm to Non-Recipients
 - Discrimination
- Harm to Recipients
 - Mismatch
 - Stereotype or Stigma

Critiques of Affirmative Action:

- Harm to Non-Recipients
 - Discrimination
- Harm to Recipients
 - Mismatch
 - Stereotype or Stigma

Critiques of Affirmative Action:

- Harm to Non-Recipients
 - Discrimination
- Harm to Recipients
 - Mismatch
 - Stereotype or Stigma

Critiques of Affirmative Action:

- Harm to Non-Recipients
 - Discrimination
- Harm to Recipients
 - Mismatch
 - Stereotype or Stigma

We examine the claim:

- Affirmative action in admissions discriminates against non-recipients. It also harms recipients because it results in a negative stereotype against them. Therefore, schools should adopt group-blind admissions.
Defining Stereotypes

- Rational view of stereotypes provides the best case for this claim
- Stereotypes as statistical discrimination
 - Differences in the academic outcomes of students from different groups
 - Arrow (1972), Phelps (1972), Coate and Loury (1993), Fang and Moro (2011)
Defining Stereotypes

- Rational view of stereotypes provides the best case for this claim
- Stereotypes as statistical discrimination
 - Differences in the academic outcomes of students from different groups
 - Arrow (1972), Phelps (1972), Coate and Loury (1993), Fang and Moro (2011)
Defining Stereotypes

- Rational view of stereotypes provides the **best** case for this claim
- Stereotypes as **statistical discrimination**
 - Differences in the academic outcomes of students from different groups
 - Arrow (1972), Phelps (1972), Coate and Loury (1993), Fang and Moro (2011)
Defining Stereotypes

- Rational view of stereotypes provides the best case for this claim
- Stereotypes as statistical discrimination
 - Differences in the academic outcomes of students from different groups
 - Arrow (1972), Phelps (1972), Coate and Loury (1993), Fang and Moro (2011)
Defining Stereotypes

- Rational view of stereotypes provides the best case for this claim
- Stereotypes as statistical discrimination
 - Differences in the academic outcomes of students from different groups
 - Arrow (1972), Phelps (1972), Coate and Loury (1993), Fang and Moro (2011)
Justice Thomas’s concurring opinion in Fisher v. Texas (2013):

Blacks and Hispanics admitted to the University as a result of racial discrimination are, on average, far less prepared than their white and Asian classmates. In the University’s entering class of 2009, for example, among the students admitted outside the Top Ten Percent plan, blacks scored at the 52d percentile of 2009 SAT takers nationwide, while Asians scored at the 93d percentile. Brief for Richard Sander et al. as Amici Curiae 3–4, and n. 4. Blacks had a mean GPA of 2.57 and a mean SAT score of 1524; Hispanics had a mean GPA of 2.83 and a mean SAT score of 1794; whites had a mean GPA of 3.04 and a mean SAT score of 1914; and Asians had a mean GPA of 3.07 and a mean SAT score of 1991.4 \textit{Ibid.}
1 Motivation

2 Stereotypes and Admissions
 - A Simple Model of Admissions
 - An ACT Example
 - Eliminating Stereotypes

3 Other Values in Admissions
 - Equal Treatment
 - Equal Treatment, and Equal Representation

4 Other Stereotypes
Assumptions

- 2 groups A and D in proportions θ_A and θ_D
- School maximizes expected score subject to admitting fraction K of students
- Scores s_A and s_D distributed continuously with common support on $[s, \bar{s}]$ according to $F_A(s)$ and $F_D(s)$
- Likelihood ratio $\frac{f_D(s)}{f_A(s)}$ decreasing in s

Definition 1

A group D experiences a *negative stereotype* in relation to A if $F_A(s) \leq F_D(s) \ \forall s$
Assumptions

- 2 groups A and D in proportions θ_A and θ_D
- School maximizes expected score subject to admitting fraction K of students
- Scores s_A and s_D distributed continuously with common support on $[s, \bar{s}]$ according to $F_A(s)$ and $F_D(s)$
- Likelihood ratio $\frac{f_D(s)}{f_A(s)}$ decreasing in s

Definition 1

A group D experiences a negative stereotype in relation to A if $F_A(s) \leq F_D(s)$ $\forall s$
Assumptions

- 2 groups A and D in proportions θ_A and θ_D
- School maximizes expected score subject to admitting fraction K of students
- Scores s_A and s_D distributed continuously with common support on $[s, \bar{s}]$ according to $F_A(s)$ and $F_D(s)$
- Likelihood ratio $\frac{f_D(s)}{f_A(s)}$ decreasing in s

Definition 1

A group D experiences a negative stereotype in relation to A if $F_A(s) \leq F_D(s)$ $\forall s$
Assumptions

- 2 groups A and D in proportions θ_A and θ_D
- School maximizes expected score subject to admitting fraction K of students
- Scores s_A and s_D distributed continuously with common support on $[s, \bar{s}]$ according to $F_A(s)$ and $F_D(s)$
- Likelihood ratio $\frac{f_D(s)}{f_A(s)}$ decreasing in s

Definition 1

A group D experiences a negative stereotype in relation to A if $F_A(s) \leq F_D(s) \forall s$
Assumptions

- 2 groups A and D in proportions θ_A and θ_D
- School maximizes expected score subject to admitting fraction K of students
- Scores s_A and s_D distributed continuously with common support on $[s, \bar{s}]$ according to $F_A(s)$ and $F_D(s)$
- Likelihood ratio $\frac{f_D(s)}{f_A(s)}$ decreasing in s

Definition 1

A group D experiences a negative stereotype in relation to A if $F_A(s) \leq F_D(s) \ \forall s$
A Simple Model of Admissions

Assumptions

- 2 groups A and D in proportions θ_A and θ_D
- School maximizes expected score subject to admitting fraction K of students
- Scores s_A and s_D distributed continuously with common support on $[s, \bar{s}]$ according to $F_A(s)$ and $F_D(s)$
- Likelihood ratio $\frac{f_D(s)}{f_A(s)}$ decreasing in s

Definition 1

A group D experiences a *negative stereotype* in relation to A if $F_A(s) \leq F_D(s) \ \forall s$
Definition 2

An admission policy consists of (i) student characteristics \(\{X\} \), (ii) a score \(s(x) \), and (iii) a probability of admission \(q(s) \).

Definition 3

An admission policy is group blind with respect to \(D \) and \(A \) if
\[
\langle X_D, s_D(x), q_D(s) \rangle = \langle X_A, s_A(x), q_A(s) \rangle.
\]
Definition 2

An *admission policy* consists of (i) student characteristics \(\{ X \} \), (ii) a score \(s(x) \), and (iii) a probability of admission \(q(s) \).

Definition 3

An admission policy is *group blind* with respect to \(D \) and \(A \) if
\[
\langle X_D, s_D(x), q_D(s) \rangle = \langle X_A, s_A(x), q_A(s) \rangle.
\]
Proposition 1

If the likelihood ratio \(\frac{f_D(s)}{f_A(s)} \) is weakly decreasing in \(s \), admitted students from \(D \) experience a negative stereotype under any group-blind admission policy.
Motivation

Stereotypes and Admissions
- A Simple Model of Admissions
- An ACT Example
- Eliminating Stereotypes

Other Values in Admissions
- Equal Treatment
- Equal Treatment, and Equal Representation

Other Stereotypes
An ACT Example

ACT Distribution by Race

- B (17%)
- W (83%)

B Mean (17.1)
17th Pctl W

W Mean (21.8)
92nd Pctl B

MLRP
An ACT Example

B (17%)
W (83%)

B Mean
(17.1)
17th Pctl W

W Mean
(21.8)
92nd Pctl B

MLRP
An ACT Example

B (17%)
W (83%)

B Mean
(17.1)
17th Pctl W

W Mean
(21.8)
92nd Pctl B

MLRP
An ACT Example

B (17%)
W (83%)

B Mean (17.1)
17th Pctl W

W Mean (21.8)
92nd Pctl B

MLRP
An ACT Example

maxE [s]

Admit 60%

B (5%)
W (95%)

B Mean (22.3)
37th Pctl W

W Mean (24.2)
88th Pctl B
Motivation

An ACT Example

\[\max E \left[s \right] \]
Admit 60%

B (5%)
W (95%)

B Mean
(22.3)
37th Pctl W

W Mean
(24.2)
88th Pctl B
An ACT Example

Motivation

- Stereotypes and Admissions
- Other Values in Admissions
- Other Stereotypes
- Conclusion

maxE [s]
Admit 60%
B (5%)
W (95%)
B Mean
(22.3)
37th Pctl W
W Mean
(24.2)
88th Pctl B
An ACT Example

maxE [s]
- Admit 60%
- B (5%)
- W (95%)
- B Mean (22.3)
- W Mean (24.2)
- 37th Pctl W
- 88th Pctl B
1 Motivation

2 Stereotypes and Admissions
 - A Simple Model of Admissions
 - An ACT Example
 - Eliminating Stereotypes

3 Other Values in Admissions
 - Equal Treatment
 - Equal Treatment, and Equal Representation

4 Other Stereotypes
maxE $[s]$
Admit 60%
Eq Mean
B (3%)
W (97%)
Eliminating Stereotypes

$maxE \ [s]$
Admit 60%
Eq Mean

B (3%)
W (97%)
A No Stereotype policy solves:

\[\max E [s] \quad \max \{q_D(s), q_A(s)\} \quad \frac{1}{K} [\theta_D \int_s s q_D(s) f_D(s) ds + \theta_A \int_s s q_A(s) f_A(s) ds] \]

Admit K
\[\phi_D \theta_D + \phi_A \theta_A = K \]

Eq Dist
\[\frac{q_D(s) f_D(s)}{\phi_D} = \frac{q_A(s) f_A(s)}{\phi_A} \quad \forall s \]

Sum
\[\phi_D = \int_s q_D(s) f_D(s) ds, \quad \phi_A = \int_s q_A(s) f_A(s) ds \]

Prob
\[0 < \phi_D \leq 1, \quad 0 < \phi_A \leq 1 \quad \forall s \]

\[0 \leq q_D(s) \leq 1, \quad 0 \leq q_A(s) \leq 1 \quad \forall s \]
A No Stereotype policy solves:

\[
\max_{E[s]} \max \{q_D(s), q_A(s)\} \frac{1}{K} \left[\theta_D \int s q_D(s) f_D(s) \, ds + \theta_A \int s q_A(s) f_A(s) \, ds \right]
\]

Admit K

\[
\phi_D \theta_D + \phi_A \theta_A = K
\]

Eq Dist

\[
\frac{q_D(s) f_D(s)}{\phi_D} = \frac{q_A(s) f_A(s)}{\phi_A} \quad \forall s
\]

Sum

\[
\phi_D = \int_s q_D(s) f_D(s) \, ds, \quad \phi_A = \int_s q_A(s) f_A(s) \, ds
\]

Prob

\[
0 < \phi_D \leq 1, \quad 0 < \phi_A \leq 1 \quad \forall s
\]

\[
0 \leq q_D(s) \leq 1, \quad 0 \leq q_A(s) \leq 1 \quad \forall s
\]
A No Stereotype policy solves:

\[
\max E [s] \quad \max \{q_D(s), q_A(s)\} \quad \frac{1}{K} \left[\theta_D \int_s q_D(s) f_D(s) \, ds + \theta_A \int_s q_A(s) f_A(s) \, ds \right]
\]

Admit \(K \) \[\phi_D \theta_D + \phi_A \theta_A = K \]

Eq Dist \[\frac{q_D(s)f_D(s)}{\phi_D} = \frac{q_A(s)f_A(s)}{\phi_A} \quad \forall s \]

Sum \[
\phi_D = \int_s q_D(s) f_D(s) \, ds, \quad \phi_A = \int_s q_A(s) f_A(s) \, ds
\]

Prob \[0 < \phi_D \leq 1, \ 0 < \phi_A \leq 1 \ \forall s \]

\[0 \leq q_D(s) \leq 1, \ 0 \leq q_A(s) \leq 1 \ \forall s \]
A No Stereotype policy solves:

\[
\max E [s] \quad \max_{\{q_D(s), q_A(s)\}} \frac{1}{K} \left[\theta_D \int_s s q_D(s) f_D(s) ds + \theta_A \int_s s q_A(s) f_A(s) ds \right]
\]

Admit \(K \) \(\phi_D \theta_D + \phi_A \theta_A = K \)

Eq Dist \(\frac{q_D(s) f_D(s)}{\phi_D} = \frac{q_A(s) f_A(s)}{\phi_A} \forall s \)

Sum \(\phi_D = \int_s q_D(s) f_D(s) ds, \phi_A = \int_s q_A(s) f_A(s) ds \)

Prob \(0 < \phi_D \leq 1, 0 < \phi_A \leq 1 \forall s \)

\(0 \leq q_D(s) \leq 1, 0 \leq q_A(s) \leq 1 \forall s \)
A No Stereotype policy solves:

$$\max E [s] = \max \{q_D(s), q_A(s)\} \frac{1}{K} [\theta_D \int s q_D(s) f_D(s) ds + \theta_A \int s q_A(s) f_A(s) ds]$$

Admit K

$$\phi_D \theta_D + \phi_A \theta_A = K$$

Eq Dist

$$\frac{q_D(s) f_D(s)}{\phi_D} = \frac{q_A(s) f_A(s)}{\phi_A} \forall s$$

Sum

$$\phi_D = \int s q_D(s) f_D(s) ds, \ \phi_A = \int s q_A(s) f_A(s) ds$$

Prob

$$0 < \phi_D \leq 1, \ 0 < \phi_A \leq 1 \forall s$$

$$0 \leq q_D(s) \leq 1, \ 0 \leq q_A(s) \leq 1 \forall s$$
A No Stereotype policy solves:

\[
\max E[s] = \max \{q_D(s), q_A(s)\} \frac{1}{K} \left[\theta_D \int s q_D(s) f_D(s) \, ds + \theta_A \int s q_A(s) f_A(s) \, ds \right]
\]

Admit \(K \)

\[
\phi_D \theta_D + \phi_A \theta_A = K
\]

Eq Dist

\[
\frac{q_D(s)f_D(s)}{\phi_D} = \frac{q_A(s)f_A(s)}{\phi_A} \quad \forall s
\]

Sum

\[
\phi_D = \int s q_D(s) f_D(s) \, ds, \quad \phi_A = \int s q_A(s) f_A(s) \, ds
\]

Prob

\[
0 < \phi_D \leq 1, \quad 0 < \phi_A \leq 1 \quad \forall s
\]

\[
0 \leq q_D(s) \leq 1, \quad 0 \leq q_A(s) \leq 1 \quad \forall s
\]
Eliminating Stereotypes

No Stereotype Admission Policy

- $q_D^*(s) = \begin{cases}
0, & s \in [s, s_L^*] \\
\frac{f_A(s)}{f_D(s)} \frac{\phi_D^*}{\phi_A^*}, & s \in [s_L^*, s_H^*] \\
1, & s \in [s_H^*, \overline{s}]
\end{cases}$

- $q_A^*(s) = \begin{cases}
0, & s \in [s, s_L^*] \\
\frac{f_D(s)}{f_D(s)} \frac{\phi_A^*}{\phi_D^*}, & s \in [s_L^*, s_H^*] \\
1, & s \in [s_H^*, \overline{s}]
\end{cases}$
Eliminating Stereotypes

No Stereotype Admission Policy

\[q_D^*(s) = \begin{cases}
0, & s \in [s, s_L] \\
\frac{f_A(s)}{f_D(s)} \frac{\phi_D^*}{\phi_A^*}, & s \in [s_L^*, s_H^*] \\
1, & s \in [s_H^*, \bar{s}]
\end{cases} \]

\[q_A^*(s) = \begin{cases}
0, & s \in [s, s_L] \\
\frac{f_D(s)}{f_D(s)} \frac{\phi_A^*}{\phi_D^*}, & s \in [s_L^*, s_H^*] \\
1, & s \in [s_H^*, \bar{s}]
\end{cases} \]
\[\max E[s] \text{ s.t.} \]

Admit 60%

Eq Dist

B (1%)

W (99%)
Eliminating Stereotypes

\[\max E[s] \text{ s.t.} \]
Admit 60%
Eq Dist
B (1%)
W (99%)
1 Motivation

2 Stereotypes and Admissions
 - A Simple Model of Admissions
 - An ACT Example
 - Eliminating Stereotypes

3 Other Values in Admissions
 - Equal Treatment
 - Equal Treatment, and Equal Representation

4 Other Stereotypes
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 $$U (c_A - c_D, E_A [s | s > c_A] - E_D [s | s > c_D])$$
- School optimizes subject to quota constraint (K)
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 $$ U(c_A - c_D, E_A[s | s > c_A] - E_D[s | s > c_D]) $$
- School optimizes subject to quota constraint (K)
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 \[U(c_A - c_D, E_A[s | s > c_A] - E_D[s | s > c_D]) \]
- School optimizes subject to quota constraint (K)
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 $U(c_A - c_D, E_A[s \mid s > c_A] - E_D[s \mid s > c_D])$
- School optimizes subject to quota constraint (K)
Proposition 3

Group-blind admissions are not optimal and $c^*_D > c^*_A$.

No Stereotype Equal Treatment

$\text{C}_A - \text{C}_D$
Other Preferences Over Equal Treatment & Stereotypes:

- Lexicographic preference for equality
- Linear Preferences
- Discontinuous Preferences at Equality
Other Preferences Over Equal Treatment & Stereotypes:

- Lexicographic preference for equality
- Linear Preferences
- Discontinuous Preferences at Equality
Other Preferences Over Equal Treatment & Stereotypes:

- Lexicographic preference for equality
- Linear Preferences
- Discontinuous Preferences at Equality
Other Preferences Over Equal Treatment & Stereotypes:

- Lexicographic preference for equality
- Linear Preferences
- Discontinuous Preferences at Equality
1 Motivation

2 Stereotypes and Admissions
 • A Simple Model of Admissions
 • An ACT Example
 • Eliminating Stereotypes

3 Other Values in Admissions
 • Equal Treatment
 • Equal Treatment, and Equal Representation

4 Other Stereotypes
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 \[U (c_A - c_D, E_A [s \mid s > c_A] - E_D [s \mid s > c_D], F_D (c_D) - F_A (c_A)) \]
- School optimizes subject to quota constraint (K)
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 \[U(c_A - c_D, E_A[s | s > c_A] - E_D[s | s > c_D], F_D(c_D) - F_A(c_A)) \]
- School optimizes subject to quota constraint (K)
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 $$U(c_A - c_D, E_A[s \mid s > c_A] - E_D[s \mid s > c_D] , F_D(c_D) - F_A(c_A))$$
- School optimizes subject to quota constraint (K)
Assumptions

- Admission policy is cutoff scores c_A and c_D
- School’s preferences:
 \[U(c_A - c_D, E_A[s | s > c_A] - E_D[s | s > c_D], F_D(c_D) - F_A(c_A)) \]
- School optimizes subject to quota constraint (K)
Proposition 4

Group-blind admissions are optimal only if marginal effects at equal treatment cancel out.
Does this explain the case for group-blind admissions? **Unlikely**

- Advocates of group-blind admissions rarely laud equal representation as an appropriate aim of admissions
- **Knife-edge case**
Does this explain the case for group-blind admissions? \textit{Unlikely}

- Advocates of group-blind admissions rarely laud equal representation as an appropriate aim of admissions
- Knife-edge case
Does this explain the case for group-blind admissions? **Unlikely**

- Advocates of group-blind admissions rarely laud equal representation as an appropriate aim of admissions
- Knife-edge case
Does this explain the case for group-blind admissions? **Unlikely**

- Advocates of group-blind admissions rarely laud equal representation as an appropriate aim of admissions
- Knife-edge case
Other Stereotypes

Conclusions are valid for any "stereotype" that:
1. Exists under group-blind admissions and
2. Decreases if admission standards are raised for disadvantaged students

Examples
- Biased stereotypes
- Stereotype threat (possible)
Other Stereotypes

- Conclusions are valid for any "stereotype" that:
 1. Exists under group-blind admissions and
 2. Decreases if admission standards are raised for disadvantaged students

- Examples
 - Biased stereotypes
 - Stereotype threat (possible)
Other Stereotypes

Conclusions are valid for any "stereotype" that:

1. Exists under group-blind admissions and
2. Decreases if admission standards are raised for disadvantaged students

Examples

- Biased stereotypes
- Stereotype threat (possible)
Other Stereotypes

Conclusions are valid for any "stereotype" that:

1. Exists under group-blind admissions and
2. Decreases if admission standards are raised for disadvantaged students

Examples

- Biased stereotypes
- Stereotype threat (possible)
Other Stereotypes

Conclusions are valid for any "stereotype" that:

1. Exists under group-blind admissions and
2. Decreases if admission standards are raised for disadvantaged students

Examples

- Biased stereotypes
- Stereotype threat (possible)
Other Stereotypes

Conclusions are valid for any "stereotype" that:

1. Exists under group-blind admissions and
2. Decreases if admission standards are raised for disadvantaged students

Examples

- Biased stereotypes
 - Stereotype threat (possible)
Other Stereotypes

- Conclusions are valid for any "stereotype" that:
 1. Exists under group-blind admissions and
 2. Decreases if admission standards are raised for disadvantaged students

- Examples
 - Biased stereotypes
 - Stereotype threat (possible)
Other Stereotypes

Conclusions are not valid for "stereotypes" that:

1. Only exist under affirmative action or
2. Do not decrease if admission standards are raised for disadvantaged students

Examples

- Stereotype is probability admitted through affirmative action
- Stereotype mediated through perceived fairness of process
Other Stereotypes

- Conclusions are not valid for "stereotypes" that:
 1. Only exist under affirmative action or
 2. Do not decrease if admission standards are raised for disadvantaged students

- Examples
 - Stereotype is probability admitted through affirmative action
 - Stereotype mediated through perceived fairness of process
Other Stereotypes

Conclusions are not valid for "stereotypes" that:

1. Only exist under affirmative action or
2. Do not decrease if admission standards are raised for disadvantaged students

Examples

- Stereotype is probability admitted through affirmative action
- Stereotype mediated through perceived fairness of process
Other Stereotypes

- Conclusions are not valid for "stereotypes" that:
 1. Only exist under affirmative action or
 2. Do not decrease if admission standards are raised for disadvantaged students

- Examples
 - Stereotype is probability admitted through affirmative action
 - Stereotype mediated through perceived fairness of process
Other Stereotypes

- Conclusions are not valid for "stereotypes" that:
 1. Only exist under affirmative action or
 2. Do not decrease if admission standards are raised for disadvantaged students

- Examples
 - Stereotype is probability admitted through affirmative action
 - Stereotype mediated through perceived fairness of process
Other Stereotypes

- Conclusions are not valid for "stereotypes" that:
 1. Only exist under affirmative action or
 2. Do not decrease if admission standards are raised for disadvantaged students

- Examples
 - Stereotype is probability admitted through affirmative action
 - Stereotype mediated through perceived fairness of process
Other Stereotypes

Conclusions are not valid for "stereotypes" that:

1. Only exist under affirmative action or
2. Do not decrease if admission standards are raised for disadvantaged students

Examples

- Stereotype is probability admitted through affirmative action
- Stereotype mediated through perceived fairness of process
Conclusions

- Stereotypes can persist under group-blind admissions
- Eliminating stereotypes implies higher standards for disadvantaged students
- Requires third goal such as equal representation to overturn this conclusion
- When all three goals present, some affirmative action will usually be optimal
- Group-blind admissions best described by lexicographic preference for equal treatment
Conclusions

- **Stereotypes can persist under group-blind admissions**
- Eliminating stereotypes implies higher standards for disadvantaged students
- Requires third goal such as equal representation to overturn this conclusion
- When all three goals present, some affirmative action will usually be optimal
- Group-blind admissions best described by lexicographic preference for equal treatment
Conclusions

- Stereotypes can persist under group-blind admissions
- Eliminating stereotypes implies higher standards for disadvantaged students
- Requires third goal such as equal representation to overturn this conclusion
- When all three goals present, some affirmative action will usually be optimal
- Group-blind admissions best described by lexicographic preference for equal treatment
Conclusions

- Stereotypes can persist under group-blind admissions
- Eliminating stereotypes implies higher standards for disadvantaged students
- Requires third goal such as equal representation to overturn this conclusion
- When all three goals present, some affirmative action will usually be optimal
- Group-blind admissions best described by lexicographic preference for equal treatment
Conclusions

- Stereotypes can persist under group-blind admissions
- Eliminating stereotypes implies higher standards for disadvantaged students
- Requires third goal such as equal representation to overturn this conclusion
- When all three goals present, some affirmative action will usually be optimal
- Group-blind admissions best described by lexicographic preference for equal treatment
Conclusions

- Stereotypes can persist under group-blind admissions
- Eliminating stereotypes implies higher standards for disadvantaged students
- Requires third goal such as equal representation to overturn this conclusion
- When all three goals present, some affirmative action will usually be optimal
- Group-blind admissions best described by lexicographic preference for equal treatment